Proper Generalized Decomposition for Multiscale and Multiphysics Problems

被引:71
|
作者
Neron, David [1 ]
Ladeveze, Pierre [1 ]
机构
[1] ENS Cachan CNRS UPMC PRES UniverSud, LMT Cachan, Paris, France
关键词
FINITE-ELEMENT-METHOD; COMPUTATIONAL STRATEGY; MODEL-REDUCTION; TIME-STEP; HOMOGENIZATION; FLUID; ALGORITHMS; FAMILY; CONSOLIDATION; INTEGRATORS;
D O I
10.1007/s11831-010-9053-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper is a review of the developments of the Proper Generalized Decomposition (PGD) method for the resolution, using the multiscale/multiphysics LATIN method, of the nonlinear, time-dependent problems ((visco)plasticity, damage, aEuro broken vertical bar) encountered in computational mechanics. PGD leads to considerable savings in terms of computing time and storage, and makes engineering problems which would otherwise be completely out of range of industrial codes accessible.
引用
收藏
页码:351 / 372
页数:22
相关论文
共 50 条
  • [41] Proper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: Application to harbor agitation
    Modesto, David
    Zlotnik, Sergio
    Huerta, Antonio
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 295 : 127 - 149
  • [42] Proper Generalized Decomposition model reduction in the Bayesian framework for solving inverse heat transfer problems
    Berger, Julien
    Orlande, Helcio R. B.
    Mendes, Nathan
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2017, 25 (02) : 260 - 278
  • [43] Randomized residual-based error estimators for the proper generalized decomposition approximation of parametrized problems
    Smetana, Kathrin
    Zahm, Olivier
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (23) : 5153 - 5177
  • [44] On the computation of intrinsic Proper Generalized Decomposition modes of parametric symmetric elliptic problems on Grassmann manifolds
    Bandera, Alejandro
    Fernandez-Garcia, Soledad
    Gomez-Marmol, Macarena
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 470
  • [45] Generalized Multiscale Inversion for Heterogeneous Problems
    Chung, Eric T.
    Efendiev, Yalchin
    Jin, Bangti
    Leung, Wing Tat
    Vasilyeva, Maria
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 25 (04) : 1213 - 1234
  • [46] Advances in multiscale numerical and experimental approaches for multiphysics problems in porous media
    Yang, Yongfei
    Zhou, Yingfang
    Blunt, Martin J.
    Yao, Jun
    Cai, Jianchao
    ADVANCES IN GEO-ENERGY RESEARCH, 2021, 5 (03): : 233 - 238
  • [48] Nonlinear multiphysics and multiscale modeling of dynamic ferromagnetic-thermal problems
    Yan, Su
    Kotulski, Joseph D.
    Jin, Jian-Ming
    JOURNAL OF APPLIED PHYSICS, 2018, 123 (10)
  • [49] Henig proper generalized vector quasiequilibrium problems
    Pham Huu Sach
    Optimization Letters, 2013, 7 : 173 - 184
  • [50] An Immersed Boundary Proper Generalized Decomposition (IB-PGD) for Fluid-Structure Interaction Problems
    Le-Quoc, C.
    Le, Linh A.
    Ho-Huu, V
    Huynh, P. D.
    Nguyen-Thoi, T.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2018, 15 (06)