On the computation of intrinsic Proper Generalized Decomposition modes of parametric symmetric elliptic problems on Grassmann manifolds

被引:0
|
作者
Bandera, Alejandro [1 ,2 ]
Fernandez-Garcia, Soledad [1 ,2 ]
Gomez-Marmol, Macarena [1 ]
机构
[1] Univ Seville, Ecuac Diferenciales & Anal Numer, Calle Tarfia S-N, Seville 41012, Spain
[2] Univ Seville, Fac Matemat, Calle Tarfia S-N, Seville 41012, Spain
关键词
Proper Generalized Decomposition; Gradient descent; Grassmann manifold; Reduced order modeling; Symmetric elliptic problems; ORTHOGONAL DECOMPOSITION;
D O I
10.1016/j.amc.2024.128579
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we introduce an iterative optimization algorithm to obtain the intrinsic Proper Generalized Decomposition modes of elliptic partial differential equations. The main idea behind this procedure is to adapt the general Gradient Descent algorithm to the algebraic version of the intrinsic Proper Generalized Decomposition framework, and then to couple a one-dimensional case of the algorithm with a deflation algorithm in order to keep enriching the solution by computing further intrinsic Proper Generalized Decomposition modes. For this novel iterative optimization procedure, we present some numerical tests based on physical parametric problems, in which we obtain very promising results in comparison with the ones already presented in the literature. This supports the use of this procedure in order to obtain the intrinsic PGD modes of parametric symmetric problems.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] On the computation of Proper Generalized Decomposition modes of parametric elliptic problems
    Azaïez M.
    Chacón Rebollo T.
    Gómez Mármol M.
    SeMA Journal, 2020, 77 (1) : 59 - 72
  • [2] A NEW ALGORITHM OF PROPER GENERALIZED DECOMPOSITION FOR PARAMETRIC SYMMETRIC ELLIPTIC PROBLEMS
    Azaiez, M.
    Ben Belgacem, F.
    Casado-Diaz, J.
    Rebollo, T. Chacon
    Murat, F.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (05) : 5426 - 5445
  • [3] An overlapping domain decomposition method for the solution of parametric elliptic problems via proper generalized decomposition
    Discacciati, Marco
    Evans, Ben J.
    Giacomini, Matteo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 418
  • [4] On the Existence of a Progressive Variational Vademecum based on the Proper Generalized Decomposition for a Class of Elliptic Parameterized Problems
    Falco, A.
    Montes, N.
    Chinesta, F.
    Hilario, L.
    Mora, M. C.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 1093 - 1107
  • [5] Proper Generalized Decomposition for Multiscale and Multiphysics Problems
    Neron, David
    Ladeveze, Pierre
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2010, 17 (04) : 351 - 372
  • [6] Proper Generalized Decomposition for Multiscale and Multiphysics Problems
    David Néron
    Pierre Ladevèze
    Archives of Computational Methods in Engineering, 2010, 17 : 351 - 372
  • [7] Parametric modeling of an electromagnetic compression device with the proper generalized decomposition
    Heuze, Thomas
    Leygue, Adrien
    Racineux, Guillaume
    INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2016, 9 (01) : 101 - 113
  • [8] Parametric modeling of an electromagnetic compression device with the proper generalized decomposition
    Thomas Heuzé
    Adrien Leygue
    Guillaume Racineux
    International Journal of Material Forming, 2016, 9 : 101 - 113
  • [9] Parametric analysis of Magnetoharmonic problem based on Proper Generalized Decomposition
    Henneron, Thomas
    Clenet, Stephane
    2016 IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (CEFC), 2016,
  • [10] A Proper Generalized Decomposition for the solution of elliptic problems in abstract form by using a functional Eckart-Young approach
    Falco, A.
    Nouy, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 376 (02) : 469 - 480