On the computation of intrinsic Proper Generalized Decomposition modes of parametric symmetric elliptic problems on Grassmann manifolds

被引:0
|
作者
Bandera, Alejandro [1 ,2 ]
Fernandez-Garcia, Soledad [1 ,2 ]
Gomez-Marmol, Macarena [1 ]
机构
[1] Univ Seville, Ecuac Diferenciales & Anal Numer, Calle Tarfia S-N, Seville 41012, Spain
[2] Univ Seville, Fac Matemat, Calle Tarfia S-N, Seville 41012, Spain
关键词
Proper Generalized Decomposition; Gradient descent; Grassmann manifold; Reduced order modeling; Symmetric elliptic problems; ORTHOGONAL DECOMPOSITION;
D O I
10.1016/j.amc.2024.128579
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we introduce an iterative optimization algorithm to obtain the intrinsic Proper Generalized Decomposition modes of elliptic partial differential equations. The main idea behind this procedure is to adapt the general Gradient Descent algorithm to the algebraic version of the intrinsic Proper Generalized Decomposition framework, and then to couple a one-dimensional case of the algorithm with a deflation algorithm in order to keep enriching the solution by computing further intrinsic Proper Generalized Decomposition modes. For this novel iterative optimization procedure, we present some numerical tests based on physical parametric problems, in which we obtain very promising results in comparison with the ones already presented in the literature. This supports the use of this procedure in order to obtain the intrinsic PGD modes of parametric symmetric problems.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] LEAST-SQUARES PROPER GENERALIZED DECOMPOSITIONS FOR WEAKLY COERCIVE ELLIPTIC PROBLEMS
    Croft, Thomas L. D.
    Phillips, Timothy N.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (04): : A1366 - A1388
  • [22] Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces
    Falco, Antonio
    Nouy, Anthony
    NUMERISCHE MATHEMATIK, 2012, 121 (03) : 503 - 530
  • [23] A stabilized mixed formulation using the proper generalized decomposition for fluid problems
    Ghnatios, Chady
    Hachem, Elie
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 346 : 769 - 787
  • [24] Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces
    Antonio Falcó
    Anthony Nouy
    Numerische Mathematik, 2012, 121 : 503 - 530
  • [25] The Proper Generalized Decomposition as a space-time integrator for elastoplastic problems
    Bergheau, Jean-Michel
    uchiatti, Sylvain
    Roux, Jean-Christophe
    Feulvarch, Eric
    Tissot, Samuel
    Perrin, Gilles
    COMPTES RENDUS MECANIQUE, 2016, 344 (11-12): : 759 - 768
  • [26] A Proper Generalized Decomposition-Based Solver for Nonlinear Magnetothermal Problems
    Qin, Zhi
    Talleb, Hakeim
    Ren, Zhuoxiang
    IEEE TRANSACTIONS ON MAGNETICS, 2016, 52 (02)
  • [27] Low-Rank Approximations for Parametric Non-Symmetric Elliptic Problems
    Chacon Rebollo, Tomas
    Marmol, Macarena Gomez
    Munoz, Isabel Sanchez
    FRONTIERS IN PHYSICS, 2022, 10
  • [28] A phase field model for the solid-state sintering with parametric proper generalized decomposition
    Ma, Weixin
    Shen, Yongxing
    POWDER TECHNOLOGY, 2023, 419
  • [29] Nonincremental proper generalized decomposition solution of parametric uncoupled models defined in evolving domains
    Ammar, Amine
    Cueto, Elias
    Chinesta, Francisco
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 93 (08) : 887 - 904
  • [30] NON DEGENERACY FOR SOLUTIONS OF SINGULARLY PERTURBED NONLINEAR ELLIPTIC PROBLEMS ON SYMMETRIC RIEMANNIAN MANIFOLDS
    Ghimenti, Marco
    Micheletti, Anna Maria
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (02) : 679 - 693