A Proper Generalized Decomposition for the solution of elliptic problems in abstract form by using a functional Eckart-Young approach

被引:52
|
作者
Falco, A. [1 ]
Nouy, A. [2 ]
机构
[1] Univ CEU Cardenal Herrera, Dept Ciencias Fis Matemat & Computac, Alfara Del Patriarca 46115, Valencia, Spain
[2] Univ Nantes, Ecole Cent Nantes, UMR CNRS 6183, GeM Inst Rech Genie Civil & Mecan, F-44321 Nantes 3, France
关键词
Proper Generalized Decomposition; Singular values; Tensor product Hilbert spaces; SPECTRAL DECOMPOSITION; COMPUTATIONAL STRATEGY; APPROXIMATION; SOLVERS; FAMILY; CHAOS; TIME; RANK;
D O I
10.1016/j.jmaa.2010.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Proper Generalized Decomposition (PGD) is a methodology initially proposed for the solution of partial differential equations (PDE) defined in tensor product spaces. It consists in constructing a separated representation of the solution of a given PDE. In this paper we consider the mathematical analysis of this framework for a larger class of problems in an abstract setting. In particular, we introduce a generalization of Eckart and Young theorem which allows to prove the convergence of the so-called progressive PGD for a large class of linear problems defined in tensor product Hilbert spaces. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:469 / 480
页数:12
相关论文
共 19 条
  • [1] An overlapping domain decomposition method for the solution of parametric elliptic problems via proper generalized decomposition
    Discacciati, Marco
    Evans, Ben J.
    Giacomini, Matteo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 418
  • [2] On the computation of Proper Generalized Decomposition modes of parametric elliptic problems
    Azaïez M.
    Chacón Rebollo T.
    Gómez Mármol M.
    SeMA Journal, 2020, 77 (1) : 59 - 72
  • [3] A NEW ALGORITHM OF PROPER GENERALIZED DECOMPOSITION FOR PARAMETRIC SYMMETRIC ELLIPTIC PROBLEMS
    Azaiez, M.
    Ben Belgacem, F.
    Casado-Diaz, J.
    Rebollo, T. Chacon
    Murat, F.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (05) : 5426 - 5445
  • [4] A proper generalized decomposition approach for high-order problems
    Quesada, C.
    Xu, G.
    Gonzalez, D.
    Alfaro, I.
    Leygue, A.
    Visonneau, M.
    Cueto, E.
    Chinesta, F.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2015, 31 (03): : 188 - 197
  • [5] On the Existence of a Progressive Variational Vademecum based on the Proper Generalized Decomposition for a Class of Elliptic Parameterized Problems
    Falco, A.
    Montes, N.
    Chinesta, F.
    Hilario, L.
    Mora, M. C.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 1093 - 1107
  • [6] On the computation of intrinsic Proper Generalized Decomposition modes of parametric symmetric elliptic problems on Grassmann manifolds
    Bandera, Alejandro
    Fernandez-Garcia, Soledad
    Gomez-Marmol, Macarena
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 470
  • [7] A stabilized mixed formulation using the proper generalized decomposition for fluid problems
    Ghnatios, Chady
    Hachem, Elie
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 346 : 769 - 787
  • [8] On the deterministic solution of multidimensional parametric models using the Proper Generalized Decomposition
    Pruliere, E.
    Chinesta, F.
    Ammar, A.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2010, 81 (04) : 791 - 810
  • [9] Proper generalized decomposition solution of the parameterized Helmholtz problem: application to inverse geophysical problems
    Signorini, Marianna
    Zlotnik, Sergio
    Diez, Pedro
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 109 (08) : 1085 - 1102
  • [10] Error estimates for abstract linear–quadratic optimal control problems using proper orthogonal decomposition
    M. Hinze
    S. Volkwein
    Computational Optimization and Applications, 2008, 39 : 319 - 345