Detection and Classification of MS Lesions in Multispectral MR Images

被引:0
|
作者
Chen, Hsian-Min [1 ]
Chai, Jyh-Wen [1 ,2 ]
Chen, Clayton Chi-Chang [1 ,2 ]
Ouyang, Yen-Chieh [3 ]
Yang, Ching-Wen [4 ]
Lee, San-Kan [1 ,2 ]
Chang, Chein-I [5 ]
机构
[1] Taichung Vet Gen Hosp, Dept Med Res, Ctr Quantitat Imaging Med CQUIM, Taichung, Taiwan
[2] Taichung Vet Gen Hosp, Dept Radiol, Taichung, Taiwan
[3] Natl Chung Hsing Univ, Dept Elect Engn, Taichung, Taiwan
[4] Taichung Vet Gen Hosp, Comp Ctr, Taichung, Taiwan
[5] Univ Maryland, Dept Comp Sci & Elect Engn, Remote Sensing Signal & Image Proc Lab, Baltimore, MD 21201 USA
关键词
multispectral MRI; MS Lesions; Detection; Classification;
D O I
10.3233/978-1-61499-484-8-2044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantitative analysis of patients with multiple sclerosis (MS) is an important issue in both diagnosis and therapy monitoring. We propose a new spectral signature detection approach for quantitative volumetric analysis of multispectral MRI. It is called constrained energy minimization (CEM) method, which is derived from the hyperspectral imaging processing. The CEM makes use of a finite impulse response (FIR) filter to linearly constrain a desired object while minimizing interfering effects caused by other unknown signal sources. The results show that the CEM method is a promising and effective spectral technique for lesions detection in multispectral MRI.
引用
收藏
页码:2044 / 2049
页数:6
相关论文
共 50 条
  • [41] Landmine Detection Using Multispectral Images
    Silva, Jose Silvestre
    Linhas Guerra, Ivo Fernando
    Bioucas-Dias, Jose
    Gasche, Thomas
    IEEE SENSORS JOURNAL, 2019, 19 (20) : 9341 - 9351
  • [42] Computerized classification method for differentiating between benign and malignant lesions on breast MR images
    Wang, Hui
    Huo, Zhimin
    Zhang, Jiwu
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 6950 - 6952
  • [43] Segmentation of Brain Lesions in MR Images
    Tripathi, Sweta
    Anand, R. S.
    Fernandez, E.
    2018 INTERNATIONAL CONFERENCE ON RECENT INNOVATIONS IN ELECTRICAL, ELECTRONICS & COMMUNICATION ENGINEERING (ICRIEECE 2018), 2018, : 1684 - 1688
  • [44] Automated Segmentation of MS Lesions in MR Images Based on an Information Theoretic Clustering and Contrast Transformations
    Hill, Jason
    Matlock, Kevin
    Nutter, Brian
    Mitra, Sunanda
    TECHNOLOGIES, 2015, 3 (02): : 142 - 161
  • [45] VALUE OF SUBTRACTION IMAGES IN THE DETECTION OF HEMORRHAGIC BRAIN-LESIONS ON CONTRAST-ENHANCED MR IMAGES
    HANNA, SL
    LANGSTON, JW
    GRONEMEYER, SA
    AMERICAN JOURNAL OF ROENTGENOLOGY, 1991, 157 (04) : 861 - 865
  • [46] VALUE OF SUBTRACTION IMAGES IN THE DETECTION OF HEMORRHAGIC BRAIN-LESIONS ON CONTRAST-ENHANCED MR IMAGES
    HANNA, SL
    LANGSTON, JW
    GRONEMEYER, SA
    AMERICAN JOURNAL OF NEURORADIOLOGY, 1991, 12 (04) : 681 - 685
  • [47] Land Cover Classification and Change Detection Analysis of Multispectral Satellite Images Using Machine Learning
    Thwal, Nyein Soe
    Ishikawa, Takaaki
    Watanabe, Hiroshi
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
  • [48] Detection of parasites in cod fillets by using SIMCA classification in multispectral images in the visible and NIR region
    Wold, JP
    Westad, F
    Heia, K
    APPLIED SPECTROSCOPY, 2001, 55 (08) : 1025 - 1034
  • [49] Segmented adaptive DPCM for lossy compression of multispectral MR images
    Hu, JH
    Wang, Y
    Cahill, P
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 1997, 8 (01) : 69 - 82
  • [50] Automatic Segmentation of Multiple Sclerosis Lesions in Multispectral MR Images Using Kernel Fuzzy C-Means Clustering
    Xiang, Yan
    He, Jianfeng
    Shao, Dangguo
    Ma, Lei
    PROCEEDINGS OF 2013 IEEE INTERNATIONAL CONFERENCE ON MEDICAL IMAGING PHYSICS AND ENGINEERING (ICMIPE), 2013, : 102 - 106