Detection and Classification of MS Lesions in Multispectral MR Images

被引:0
|
作者
Chen, Hsian-Min [1 ]
Chai, Jyh-Wen [1 ,2 ]
Chen, Clayton Chi-Chang [1 ,2 ]
Ouyang, Yen-Chieh [3 ]
Yang, Ching-Wen [4 ]
Lee, San-Kan [1 ,2 ]
Chang, Chein-I [5 ]
机构
[1] Taichung Vet Gen Hosp, Dept Med Res, Ctr Quantitat Imaging Med CQUIM, Taichung, Taiwan
[2] Taichung Vet Gen Hosp, Dept Radiol, Taichung, Taiwan
[3] Natl Chung Hsing Univ, Dept Elect Engn, Taichung, Taiwan
[4] Taichung Vet Gen Hosp, Comp Ctr, Taichung, Taiwan
[5] Univ Maryland, Dept Comp Sci & Elect Engn, Remote Sensing Signal & Image Proc Lab, Baltimore, MD 21201 USA
关键词
multispectral MRI; MS Lesions; Detection; Classification;
D O I
10.3233/978-1-61499-484-8-2044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantitative analysis of patients with multiple sclerosis (MS) is an important issue in both diagnosis and therapy monitoring. We propose a new spectral signature detection approach for quantitative volumetric analysis of multispectral MRI. It is called constrained energy minimization (CEM) method, which is derived from the hyperspectral imaging processing. The CEM makes use of a finite impulse response (FIR) filter to linearly constrain a desired object while minimizing interfering effects caused by other unknown signal sources. The results show that the CEM method is a promising and effective spectral technique for lesions detection in multispectral MRI.
引用
收藏
页码:2044 / 2049
页数:6
相关论文
共 50 条
  • [31] Automated classification of multispectral MR images using unsupervised constrained energy minimization based on fuzzy logic
    Lin, Geng-Cheng
    Wang, Chuin-Mu
    Wang, Wen-June
    Sun, Sheng-Yih
    MAGNETIC RESONANCE IMAGING, 2010, 28 (05) : 721 - 738
  • [32] Unsupervised statistical segmentation of multispectral volumetric MR images
    Tamez-Peña, JG
    Totterman, S
    Parker, KJ
    MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 : 300 - 311
  • [33] Multispectral MR images segmentation using SOM network
    Qian, TB
    Li, ML
    FOURTH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY, PROCEEDINGS, 2004, : 155 - 158
  • [34] Gender Classification from Multispectral Periocular Images
    Tapia, Juan
    Viedma, Ignacio
    2017 IEEE INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB), 2017, : 805 - 812
  • [35] INTERACTIVE CLASSIFICATION ORIENTED SUPERRESOLUTION OF MULTISPECTRAL IMAGES
    Ruiz, P.
    Talents, J. V.
    Mateos, J.
    Molina, R.
    Katsaggelos, A. K.
    SCIENCE: IMAGE IN ACTION, 2012, : 77 - 85
  • [36] URBAN AREA CLASSIFICATION BY MULTISPECTRAL SPOT IMAGES
    BARALDI, A
    PARMIGGIANI, F
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1990, 28 (04): : 674 - 680
  • [37] Classification by using wavelet transform on multispectral images
    Wang Hai-Hui
    Cai Ai-Ping
    GEOINFORMATICS 2006: REMOTELY SENSED DATA AND INFORMATION, 2006, 6419
  • [38] Cloud Detection of MODIS Multispectral Images
    Murino, Loredana
    Amato, Umberto
    Carfora, Maria Francesca
    Antoniadis, Anestis
    Huang, Bormin
    Menzel, W. Paul
    Serio, Carmine
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2014, 31 (02) : 347 - 365
  • [39] A Gravitational Edge Detection for Multispectral Images
    Sun, G. (genyunsun@163.com), 1600, Universitas Ahmad Dahlan, Jalan Kapas 9, Semaki, Umbul Harjo,, Yogiakarta, 55165, Indonesia (11):
  • [40] EDGE-DETECTION IN MULTISPECTRAL IMAGES
    CUMANI, A
    CVGIP-GRAPHICAL MODELS AND IMAGE PROCESSING, 1991, 53 (01): : 40 - 51