Detection and Classification of MS Lesions in Multispectral MR Images

被引:0
|
作者
Chen, Hsian-Min [1 ]
Chai, Jyh-Wen [1 ,2 ]
Chen, Clayton Chi-Chang [1 ,2 ]
Ouyang, Yen-Chieh [3 ]
Yang, Ching-Wen [4 ]
Lee, San-Kan [1 ,2 ]
Chang, Chein-I [5 ]
机构
[1] Taichung Vet Gen Hosp, Dept Med Res, Ctr Quantitat Imaging Med CQUIM, Taichung, Taiwan
[2] Taichung Vet Gen Hosp, Dept Radiol, Taichung, Taiwan
[3] Natl Chung Hsing Univ, Dept Elect Engn, Taichung, Taiwan
[4] Taichung Vet Gen Hosp, Comp Ctr, Taichung, Taiwan
[5] Univ Maryland, Dept Comp Sci & Elect Engn, Remote Sensing Signal & Image Proc Lab, Baltimore, MD 21201 USA
关键词
multispectral MRI; MS Lesions; Detection; Classification;
D O I
10.3233/978-1-61499-484-8-2044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantitative analysis of patients with multiple sclerosis (MS) is an important issue in both diagnosis and therapy monitoring. We propose a new spectral signature detection approach for quantitative volumetric analysis of multispectral MRI. It is called constrained energy minimization (CEM) method, which is derived from the hyperspectral imaging processing. The CEM makes use of a finite impulse response (FIR) filter to linearly constrain a desired object while minimizing interfering effects caused by other unknown signal sources. The results show that the CEM method is a promising and effective spectral technique for lesions detection in multispectral MRI.
引用
收藏
页码:2044 / 2049
页数:6
相关论文
共 50 条
  • [1] Detection of spectral signatures in multispectral MR images for classification
    Wang, CM
    Chen, CCC
    Chung, YN
    Yang, SC
    Chung, PC
    Yang, CW
    Chang, CI
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2003, 22 (01) : 50 - 61
  • [2] Improvement of Pseudo Multispectral Classification of Brain MR Images
    Fatnassi, C.
    Boucenna, R.
    Zaidi, H.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, 2015, VOLS 1 AND 2, 2015, 51 : 111 - 114
  • [3] Adaptive muitilevel classification and detection in multispectral images
    Zavaljevski, A
    Dhawan, AP
    Kelch, DJ
    Riddell, J
    OPTICAL ENGINEERING, 1996, 35 (10) : 2884 - 2893
  • [4] Automatic Computer-Aided Detection of Multiple Sclerosis (MS) Lesions on MR Images
    Eksi, Ziya
    Ozcan, Muhammed Emin
    Aralasmak, Ayse
    Dandil, Emre
    Cakiroglu, Murat
    2015 19TH NATIONAL BIOMEDICAL ENGINEERING MEETING (BIYOMUT), 2015,
  • [5] Two channels fuzzy C-means detection of multiple sclerosis lesions in multispectral MR images
    Ardizzone, E
    Pirrone, R
    Gambino, O
    Peri, D
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2002, : 345 - 348
  • [6] Active Learning classification and change detection on multispectral images
    Mantripragada, Kiran
    Quintanilha, Jose Alberto
    Giannotti, Mariana Abrantes
    2014 12TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2014, : 26 - +
  • [7] Measuring Spectral Consistency for Detection of Retinal Lesions in Multispectral Images
    Lian, Jian
    Jiao, Wanzhen
    Zhao, Bojun
    Zheng, Yuanjie
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [8] Detection of Lesions in Lettuce Caused by Pectobacterium carotovorum Subsp. carotovorum by Supervised Classification Using Multispectral Images
    Carmo, Glecia Junia dos Santos
    Castoldi, Renata
    Martins, George Deroco
    Jacinto, Ana Carolina Pires
    Tebaldi, Nilvanira Donizete
    Charlo, Hamilton Cesar de Oliveira
    Zampiroli, Renan
    CANADIAN JOURNAL OF REMOTE SENSING, 2022, 48 (02) : 144 - 157
  • [9] MULTISPECTRAL ANALYSIS OF MR IMAGES OF THE BREAST
    GOHAGAN, JK
    SPITZNAGEL, EL
    MURPHY, WA
    VANNIER, MW
    DIXON, WT
    GERSELL, DJ
    ROSSNICK, SL
    TOTTY, WG
    DESTOUET, JM
    RICKMAN, DL
    SPRAGGINS, TA
    BUTTERFIELD, RL
    RADIOLOGY, 1987, 163 (03) : 703 - 707
  • [10] CLASSIFICATION OF MULTISPECTRAL IMAGES.
    Hattori, Norihide
    Ishii, Naohiro
    Suzumura, Nobuo
    Systems, computers, controls, 1984, 15 (03): : 44 - 52