Integrable billiards and quadrics

被引:14
|
作者
Dragovic, V. [1 ,2 ]
Radnovic, M. [1 ]
机构
[1] Math Inst SANU, Belgrade, Serbia
[2] Univ Lisbon, Math Phys Grp, P-1699 Lisbon, Portugal
关键词
hyperelliptic curve; Jacobian variety; Poncelet porism; periodic trajectories; Poncelet-Darboux grids; addition theorems; INVARIANT-MEASURES; PONCELET THEOREM; SYSTEMS; BIFURCATIONS; GEODESICS; SURFACES; PENCILS; MODULI;
D O I
10.1070/RM2010v065n02ABEH004673
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Billiards inside quadrics are considered as integrable dynamical systems with a rich geometric structure. The two-way interaction between the dynamics of billiards and the geometry of pencils of quadrics in an arbitrary dimension is considered. Several well-known classical and modern genus-1 results are generalized to arbitrary dimension and genus, such as: the Ponce let theorem, the Darboux theorem, the Weyr theorem, and the Griffiths-Harris space theorem. A synthetic approach to higher-genera addition theorems is presented.
引用
收藏
页码:319 / 379
页数:61
相关论文
共 50 条
  • [31] Heat kernel of integrable billiards in a magnetic field
    Narevich, R
    Spehner, D
    Akkermans, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (18): : 4277 - 4287
  • [32] Semiclassical theory of integrable and rough Andreev billiards
    W. Ihra
    M. Leadbeater
    J.L. Vega
    K. Richter
    The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 21 : 425 - 435
  • [33] Integrable perturbations of billiards on constant curvature surfaces
    Jovanovic, B
    PHYSICS LETTERS A, 1997, 231 (5-6) : 353 - 358
  • [34] Integrable perturbations of billiards on constant curvature surfaces
    Mathematical Institute SANU, Kneza Mihaila 35, 11000 Belgrade, Yugoslavia
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 231 (5-6): : 353 - 358
  • [35] PSEUDO-INTEGRABLE BILLIARDS AND ARITHMETIC DYNAMICS
    Dragovic, Vladimir
    Radnovic, Milena
    JOURNAL OF MODERN DYNAMICS, 2014, 8 (01) : 109 - 132
  • [36] Integrable topological billiards and equivalent dynamical systems
    Vedyushkina , V. V.
    Fomenko, A. T.
    IZVESTIYA MATHEMATICS, 2017, 81 (04) : 688 - 733
  • [37] Integrable ellipsoidal billiards with separable polynomial potentials
    Abenda, S
    Fedorov, Y
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 687 - 692
  • [38] Rotation Functions of Integrable Billiards As Orbital Invariants
    Belozerov, G. V.
    Fomenko, A. T.
    DOKLADY MATHEMATICS, 2024, 109 (01) : 1 - 5
  • [39] Semiclassical theory of integrable and rough Andreev billiards
    Ihra, W
    Leadbeater, M
    Vega, JL
    Richter, K
    EUROPEAN PHYSICAL JOURNAL B, 2001, 21 (03): : 425 - 435
  • [40] A ONE-PARTICLE POTENTIAL INTEGRABLE ON A FAMILY OF QUADRICS
    WOJCIECHOWSKI, S
    LETTERS IN MATHEMATICAL PHYSICS, 1985, 9 (03) : 221 - 226