Integrable billiards and quadrics

被引:14
|
作者
Dragovic, V. [1 ,2 ]
Radnovic, M. [1 ]
机构
[1] Math Inst SANU, Belgrade, Serbia
[2] Univ Lisbon, Math Phys Grp, P-1699 Lisbon, Portugal
关键词
hyperelliptic curve; Jacobian variety; Poncelet porism; periodic trajectories; Poncelet-Darboux grids; addition theorems; INVARIANT-MEASURES; PONCELET THEOREM; SYSTEMS; BIFURCATIONS; GEODESICS; SURFACES; PENCILS; MODULI;
D O I
10.1070/RM2010v065n02ABEH004673
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Billiards inside quadrics are considered as integrable dynamical systems with a rich geometric structure. The two-way interaction between the dynamics of billiards and the geometry of pencils of quadrics in an arbitrary dimension is considered. Several well-known classical and modern genus-1 results are generalized to arbitrary dimension and genus, such as: the Ponce let theorem, the Darboux theorem, the Weyr theorem, and the Griffiths-Harris space theorem. A synthetic approach to higher-genera addition theorems is presented.
引用
收藏
页码:319 / 379
页数:61
相关论文
共 50 条
  • [21] CLASSICAL AND QUANTUM BILLIARDS - INTEGRABLE, NONINTEGRABLE AND PSEUDO-INTEGRABLE
    ZYCZKOWSKI, K
    ACTA PHYSICA POLONICA B, 1992, 23 (03): : 245 - 270
  • [22] INTEGRABLE BILLIARDS ON SURFACES OF CONSTANT CURVATURE
    BOLOTIN, SV
    MATHEMATICAL NOTES, 1992, 51 (1-2) : 117 - 123
  • [23] Conformal transformations and integrable mechanical billiards
    Takeuchi, Airi
    Zhao, Lei
    ADVANCES IN MATHEMATICS, 2024, 436
  • [24] Closed Geodesics and Billiards on Quadrics Related to Elliptic KdV Solutions
    Simonetta Abenda
    Yuri Fedorov
    Letters in Mathematical Physics, 2006, 76 : 111 - 134
  • [25] Closed geodesics and billiards on quadrics related to elliptic KdV solutions
    Abenda, Simonetta
    Fedorov, Yuri
    LETTERS IN MATHEMATICAL PHYSICS, 2006, 76 (2-3) : 111 - 134
  • [26] Ellipsoidal billiards in pseudo-Euclidean spaces and relativistic quadrics
    Dragovic, Vladimir
    Radnovic, Milena
    ADVANCES IN MATHEMATICS, 2012, 231 (3-4) : 1173 - 1201
  • [27] Integrable billiards model important integrable cases of rigid body dynamics
    V. V. Fokicheva
    A. T. Fomenko
    Doklady Mathematics, 2015, 92 : 682 - 684
  • [28] Gaussian orthogonal ensemble statistics in graphene billiards with the shape of classically integrable billiards
    Yu, Pei
    Li, Zi-Yuan
    Xu, Hong-Ya
    Huang, Liang
    Dietz, Barbara
    Grebogi, Celso
    Lai, Ying-Cheng
    PHYSICAL REVIEW E, 2016, 94 (06)
  • [29] Integrable billiards model important integrable cases of rigid body dynamics
    Fokicheva, V. V.
    Fomenko, A. T.
    DOKLADY MATHEMATICS, 2015, 92 (03) : 682 - 684
  • [30] Rotation Functions of Integrable Billiards As Orbital Invariants
    G. V. Belozerov
    A. T. Fomenko
    Doklady Mathematics, 2024, 109 : 1 - 5