High-throughput sequencing and clinical microbiology: progress, opportunities and challenges

被引:105
|
作者
Pallen, Mark J. [1 ]
Loman, Nicholas J. [1 ]
Penn, Charles W. [1 ]
机构
[1] Univ Birmingham, Sch Biosci, Birmingham B15 2TT, W Midlands, England
基金
英国生物技术与生命科学研究理事会;
关键词
BACTERIAL; COMPLEXITY; DIVERSITY; EVOLUTION; MUTANTS; CATALOG; CELLS;
D O I
10.1016/j.mib.2010.08.003
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
High-throughput sequencing is sweeping through clinical microbiology, transforming our discipline in its wake. It is already providing an enhanced view of pathogen biology through rapid and inexpensive whole-genome sequencing and more sophisticated applications such as RNA-seq. It also promises to deliver high-resolution genomic epidemiology as the ultimate typing method for bacteria. However, the most revolutionary effect of this 'disruptive technology' is likely to be creation of a novel sequence-based, culture-independent diagnostic microbiology that incorporates microbial community profiling, metagenomics and single-cell genomics. We should prepare for the coming 'technological singularity' in sequencing, when this technology becomes so fast and so cheap that it threatens to out-compete existing diagnostic and typing methods in microbiology.
引用
收藏
页码:625 / 631
页数:7
相关论文
共 50 条
  • [31] High-throughput sequencing of African chikanda cake highlights conservation challenges in orchids
    Veldman, Sarina
    Gravendeel, Barbara
    Otieno, Joseph N.
    Lammers, Youri
    Duijm, Elza
    Nieman, Aline
    Bytebier, Benny
    Ngugi, Grace
    Martos, Florent
    van Andel, Tinde R.
    de Boer, Hugo J.
    BIODIVERSITY AND CONSERVATION, 2017, 26 (09) : 2029 - 2046
  • [32] High-throughput sequencing of African chikanda cake highlights conservation challenges in orchids
    Sarina Veldman
    Barbara Gravendeel
    Joseph N. Otieno
    Youri Lammers
    Elza Duijm
    Aline Nieman
    Benny Bytebier
    Grace Ngugi
    Florent Martos
    Tinde R. van Andel
    Hugo J. de Boer
    Biodiversity and Conservation, 2017, 26 : 2029 - 2046
  • [33] High-throughput sequencing and vaccine design
    Luciani, F.
    REVUE SCIENTIFIQUE ET TECHNIQUE-OFFICE INTERNATIONAL DES EPIZOOTIES, 2016, 35 (01): : 53 - 65
  • [34] DNA sequencing in high-throughput neuroanatomy
    Kebschull, Justus M.
    JOURNAL OF CHEMICAL NEUROANATOMY, 2019, 100
  • [35] High-throughput sequencing for algal systematics
    Oliveira, Mariana C.
    Repetti, Sonja I.
    Iha, Cintia
    Jackson, Christopher J.
    Diaz-Tapia, Pilar
    Lubiana, Karoline Magalhaes Ferreira
    Cassano, Valeria
    Costa, Joana F.
    Cremen, Ma Chiela M.
    Marcelino, Vanessa R.
    Verbruggen, Heroen
    EUROPEAN JOURNAL OF PHYCOLOGY, 2018, 53 (03) : 256 - 272
  • [36] Optimizing SELEX with high-throughput sequencing
    White, Brian S.
    Ozer, Abdullah
    Lis, John T.
    Shalloway, David
    CANCER RESEARCH, 2012, 72
  • [37] High-throughput sequencing of the melanoma genome
    Kunz, Manfred
    Dannemann, Michael
    Kelso, Janet
    EXPERIMENTAL DERMATOLOGY, 2013, 22 (01) : 10 - 17
  • [38] SnapShot: High-Throughput Sequencing Applications
    Han, Hong
    Nutiu, Razvan
    Moffat, Jason
    Blencowe, Benjamin J.
    CELL, 2011, 146 (06) : 1044 - 1046
  • [39] High-throughput sequencing in vaccine research
    Pasik, Katarzyna
    Domanska-Blicharz, Katarzyna
    JOURNAL OF VETERINARY RESEARCH, 2021, 65 (02) : 131 - 137
  • [40] High-throughput sequencing for biology and medicine
    Soon, Wendy Weijia
    Hariharan, Manoj
    Snyder, Michael P.
    MOLECULAR SYSTEMS BIOLOGY, 2013, 9