Kalman filtering using pairwise Gaussian models

被引:0
|
作者
Pieczynski, W [1 ]
Desbouvries, F [1 ]
机构
[1] Inst Natl Telecommun, Dept Commun Image & Traitement Informat, F-91011 Evry, France
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An important problem in signal processing consists in recursively estimating an unobservable process x = {x(n)}(nis an element ofIN) from an observed process y = {y(n)}(nis an element ofIN). This is done classically in the framework of Hidden Markov Models (HMM). In the linear Gaussian case, the classical recursive solution is given by the well-known Kalman filter. In this paper, we consider Pairwise Gaussian Models by assuming that the pair (x, y) is Markovian and Gaussian. We show that this model is strictly more general than the HMM, and yet still enables Kalman-like filtering.
引用
收藏
页码:57 / 60
页数:4
相关论文
共 50 条
  • [41] Differential integer ambiguity resolution with Gaussian a priori knowledge and Kalman filtering
    Henkel, P.
    Jurkowski, P.
    Guenther, C.
    PROCEEDINGS OF THE 24TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS 2011), 2011, : 3881 - 3888
  • [42] Transformer Monitoring Using Kalman Filtering
    Shastri, Subramanian V.
    Stewart, Emma
    Roberts, Ciaran
    2017 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA 2017), 2017, : 1643 - 1648
  • [43] Non-Coherent detection of GFSK Using Extended Kalman Filtering for Non-Gaussian Noise
    Nsour, Ahmad
    Abdallah, Alhaj-Saleh
    Zohdy, Mohamed
    2014 WIRELESS TELECOMMUNICATIONS SYMPOSIUM (WTS), 2014,
  • [44] Non-Gaussian parameter estimation using generalized polynomial chaos expansion with extended Kalman filtering
    Sen, Subhamoy
    Bhattacharya, Baidurya
    STRUCTURAL SAFETY, 2018, 70 : 104 - 114
  • [45] A competitive baseline for deep learning enhanced data assimilation using conditional Gaussian ensemble Kalman filtering
    Malik, Zachariah
    Maulik, Romit
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 440
  • [46] LEARNING GAUSSIAN GRAPHICAL MODELS WITH DIFFERING PAIRWISE SAMPLE SIZES
    Zheng, Lili
    Allen, Genevera, I
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5588 - 5592
  • [47] CONVERGENCE ANALYSIS OF BELIEF PROPAGATION FOR PAIRWISE LINEAR GAUSSIAN MODELS
    Du, Jian
    Ma, Shaodan
    Wu, Yik-Chung
    Kar, Soummya
    Moura, Jose M. F.
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 548 - 552
  • [48] Kalman-Bucy filtering for stochastic Volterra models
    Univ of the Basque Country, Bilbao, Spain
    Int J Syst Sci, 2 (435-456):
  • [49] KALMAN FILTERING FOR 2ND-ORDER MODELS
    HASHEMIPOUR, HR
    LAUB, AJ
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1988, 11 (02) : 181 - 186
  • [50] Kalman-Bucy filtering for stochastic Volterra models
    Sen, Manuel De La
    Alastruey, Carlos F.
    International Journal of Systems Science, 1995, 26 (02): : 435 - 456