Kalman filtering using pairwise Gaussian models

被引:0
|
作者
Pieczynski, W [1 ]
Desbouvries, F [1 ]
机构
[1] Inst Natl Telecommun, Dept Commun Image & Traitement Informat, F-91011 Evry, France
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An important problem in signal processing consists in recursively estimating an unobservable process x = {x(n)}(nis an element ofIN) from an observed process y = {y(n)}(nis an element ofIN). This is done classically in the framework of Hidden Markov Models (HMM). In the linear Gaussian case, the classical recursive solution is given by the well-known Kalman filter. In this paper, we consider Pairwise Gaussian Models by assuming that the pair (x, y) is Markovian and Gaussian. We show that this model is strictly more general than the HMM, and yet still enables Kalman-like filtering.
引用
收藏
页码:57 / 60
页数:4
相关论文
共 50 条
  • [22] Optimization Model of Gaussian Process Regression Based on Kalman Filtering
    Xu H.
    Yang C.
    Zhang Y.
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2024, 44 (05): : 538 - 545
  • [23] Kalman Filtering With Delayed Measurements in Non-Gaussian Environments
    Nanda, Sumanta Kumar
    Kumar, Guddu
    Bhatia, Vimal
    Singh, Abhinoy Kumar
    IEEE ACCESS, 2021, 9 : 123231 - 123244
  • [24] Ensemble Kalman Filtering for Online Gaussian Process Regression and Learning
    Kuzin, Danil
    Yang, Le
    Isupova, Olga
    Mihaylova, Lyudmila
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 39 - 46
  • [25] Distributed Kalman filtering for Time-Space Gaussian Processes
    Todescato, M.
    Dalla Libera, A.
    Carli, R.
    Pillonetto, G.
    Schenato, L.
    IFAC PAPERSONLINE, 2017, 50 (01): : 13234 - 13239
  • [26] Gaussian Sum High Order Unscented Kalman Filtering Algorithm
    Wang L.
    Cheng X.-H.
    Li S.-X.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2017, 45 (02): : 424 - 430
  • [27] State estimation in pairwise Markov models with improved robustness using unbiased FIR filtering
    Lehmann, Frederic
    Pieczynski, Wojciech
    SIGNAL PROCESSING, 2020, 172
  • [28] RSS-based Respiratory Rate Monitoring using Periodic Gaussian Processes and Kalman Filtering
    Hostettler, Roland
    Kaltiokallio, Ossi
    Yigitler, Huseyin
    Sarkka, Simo
    Jantti, Riku
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 256 - 260
  • [29] Visual tracking using the Earth Mover's Distance between Gaussian mixtures and Kalman filtering
    Karavasilis, Vasileios
    Nikou, Christophoros
    Likas, Aristidis
    IMAGE AND VISION COMPUTING, 2011, 29 (05) : 295 - 305
  • [30] APPLICATION OF KALMAN FILTERING TO DEMOGRAPHIC-MODELS
    LEIBUNDGUT, BG
    RAULT, A
    GENDREAU, F
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1983, 28 (03) : 427 - 434