Germanium Nanowire Metal-Oxide-Semiconductor Field-Effect Transistor Fabricated by Complementary-Metal-Oxide-Semiconductor-Compatible Process

被引:11
|
作者
Peng, J. W. [1 ,2 ]
Singh, N. [2 ]
Lo, G. Q. [2 ]
Bosman, M. [2 ]
Ng, C. M. [3 ]
Lee, S. J. [1 ]
机构
[1] Natl Univ Singapore, Silicon Nano Device Lab, Singapore 119260, Singapore
[2] ASTAR, Inst Microelect, Singapore 117685, Singapore
[3] GLOBALFOUNDRIES, Singapore 738406, Singapore
关键词
Core/shell (C/S); germanium (Ge); metal-oxide-semiconductor field-effect transistor (MOSFET); nanowire (NW); top-down; BACKSCATTERING CHARACTERISTICS; PERFORMANCE; SI; PMOSFETS; GROWTH;
D O I
10.1109/TED.2010.2088125
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work presents a complementary metal-oxide-semiconductor-compatible top-down fabrication of Ge nanowires along with their integration into pMOSFETs with "HfO2/TaN" high-k/metal gate stacks. Lateral Ge wires down to 14 nm in diameter are achieved using a two-step dry etch process on a high-quality epitaxial Ge layer. To improve the interface quality between the Ge nanowire and the HfO2, thermally grown GeO2 and epitaxial-Si shells are used as interlayers. Devices with a GeO2 shell demonstrated excellent I-ON/I-OFF ratios (> 10(6)), whereas the epitaxial-Si shell was found to improve the field-effect mobility of the holes in Ge nanowires to 254 cm(2)V(-1) . s(-1).
引用
收藏
页码:74 / 79
页数:6
相关论文
共 50 条
  • [41] Ultralow-Power Complementary Metal-Oxide-Semiconductor Inverters Constructed on Schottky Barrier Modified Nanowire Metal-Oxide-Semiconductor Field-Effect-Transistors
    Ma, R. M.
    Peng, R. M.
    Wen, X. N.
    Dai, L.
    Liu, C.
    Sun, T.
    Xu, W. J.
    Qin, G. G.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (10) : 6428 - 6431
  • [42] Gate width dependence on backscattering characteristics in the nanoscale strained complementary metal-oxide-semiconductor field-effect transistor
    Liao, M. H.
    Liu, C. W.
    Yeh, Lingyen
    Lee, T. -L.
    Liang, M. -S.
    APPLIED PHYSICS LETTERS, 2008, 92 (06)
  • [43] Radiation effect of deep-submicron metal-oxide-semiconductor field-effect transistor and parasitic transistor
    Wang Xin
    Lu Wu
    Wu Xue
    Ma Wu-Ying
    Cui Jiang-Wei
    Liu Mo-Han
    Jiang Ke
    ACTA PHYSICA SINICA, 2014, 63 (22) : 226101
  • [44] Shot noise model of the short channel metal-oxide-semiconductor field-effect transistor
    Zhang Meng
    Yao Ruo-He
    Liu Yu-Rong
    Geng Kui-Wei
    ACTA PHYSICA SINICA, 2020, 69 (17)
  • [45] The drain velocity overshoot in an 80 nm metal-oxide-semiconductor field-effect transistor
    Tan, Michael L. P.
    Arora, Vijay K.
    Saad, Ismail
    Ahmadi, Mohammad Taghi
    Ismail, Razali
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (07)
  • [46] Ge/Si quantum-dot metal-oxide-semiconductor field-effect transistor
    Yakimov, AI
    Dvurechenskii, AV
    Kirienko, VV
    Nikiforov, AI
    APPLIED PHYSICS LETTERS, 2002, 80 (25) : 4783 - 4785
  • [47] The drain velocity overshoot in an 80 nm metal-oxide-semiconductor field-effect transistor
    Tan, Michael L. P.
    Arora, Vijay K.
    Saad, Ismail
    Taghi Ahmadi, Mohammad
    Ismail, Razali
    Journal of Applied Physics, 2009, 105 (07):
  • [48] Sharp Resonance in a Metal-Oxide-Semiconductor Field-Effect Transistor with Multifinger Gate Configuration
    Abe, Kazuhide
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2013, 52 (07)
  • [49] ENERGY-BAND DIAGRAM OF A SI METAL-OXIDE-SEMICONDUCTOR FIELD-EFFECT TRANSISTOR
    FU, Y
    WILLANDER, M
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1995, 42 (08) : 1522 - 1527
  • [50] A Diamond: H/WO3 Metal-Oxide-Semiconductor Field-Effect Transistor
    Yin, Zongyou
    Tordjman, Moshe
    Vardi, Alon
    Kalish, Rafi
    del Alamo, Jesus A.
    IEEE ELECTRON DEVICE LETTERS, 2018, 39 (04) : 540 - 543