Piecewise linear prewavelets over type-2 triangulations

被引:0
|
作者
Cao, Jiansheng [1 ]
Hong, Don
机构
[1] E Tennessee State Univ, Dept Math, Johnson City, TN 37614 USA
[2] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA
关键词
linear splines; prewavelets; smaller support; triangulation;
D O I
10.1080/00036810601109200
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the construction of piecewise linear prewavelets over type-2 triangulations. Different from a so-called semi-prewavelet approach, we investigate the orthogonal conditions directly and obtain parameterized prewavelets with a smaller support. The conditions for parameterized prewavelet basis on the parameters are also given.
引用
收藏
页码:83 / 98
页数:16
相关论文
共 50 条
  • [21] A piecewise type-2 fuzzy regression model
    Shafaei Bajestani N.
    Kamyad A.V.
    Zare A.
    International Journal of Computational Intelligence Systems, 2017, 10 (1) : 734 - 744
  • [22] Type-2 Fuzzy membership function design method through a piecewise-linear approach
    Ibarra, Luis
    Rojas, Mario
    Ponce, Pedro
    Molina, Arturo
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (21) : 7530 - 7540
  • [23] Closed Form Solutions for the Type Reduction of General Type-2 Fuzzy Sets with Piecewise Linear Membership Functions
    Liu, Xinwang
    Du, Wei
    2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 1232 - 1239
  • [24] There are no piecewise linear maps of type 2(infinity)
    Lopez, VJ
    Snoha, L
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (04) : 1377 - 1387
  • [25] Type-2 fuzzy linear systems
    Najariyan M.
    Mazandarani M.
    John R.
    Mazandarani, Mehran (me.mazandarani@gmail.com), 1600, Springer Nature (02): : 175 - 186
  • [26] ADAPTIVE APPROXIMATION BY PIECEWISE LINEAR POLYNOMIALS ON TRIANGULATIONS OF SUBSETS OF SCATTERED DATA
    RIPPA, S
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (05): : 1123 - 1141
  • [27] Superconvergence of piecewise linear semi-discretizations for parabolic equations with nonuniform triangulations
    Barbeiro, S
    Ferreira, JA
    Brandts, J
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2005, 7 (Suppl 2) : S192 - S214
  • [28] Superconvergence of Piecewise Linear Semi-Discretizations for Parabolic Equations with Nonuniform Triangulations
    S. Barbeiro
    J. A. Ferreira
    J. Brandts
    Journal of Mathematical Fluid Mechanics, 2005, 7 : S192 - S214
  • [29] Image compression by linear splines over adaptive triangulations
    Demaret, Laurent
    Dyn, Nira
    Iske, Armin
    SIGNAL PROCESSING, 2006, 86 (07) : 1604 - 1616
  • [30] Local Lagrange Interpolations by Bivariate Cubic Splines with Boundary Conditions on Nonuniform Type-2 Triangulations
    Yu, Jinhong
    Liu, Huan-Wen
    INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 1, PROCEEDINGS, 2009, : 140 - 144