Piecewise linear prewavelets over type-2 triangulations

被引:0
|
作者
Cao, Jiansheng [1 ]
Hong, Don
机构
[1] E Tennessee State Univ, Dept Math, Johnson City, TN 37614 USA
[2] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA
关键词
linear splines; prewavelets; smaller support; triangulation;
D O I
10.1080/00036810601109200
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the construction of piecewise linear prewavelets over type-2 triangulations. Different from a so-called semi-prewavelet approach, we investigate the orthogonal conditions directly and obtain parameterized prewavelets with a smaller support. The conditions for parameterized prewavelet basis on the parameters are also given.
引用
收藏
页码:83 / 98
页数:16
相关论文
共 50 条
  • [11] Surfaces with piecewise linear support functions over spherical triangulations
    Almegaard, Henrik
    Bagger, Anne
    Gravesen, Jens
    Juttler, Bert
    Sir, Zbynek
    MATHEMATICS OF SURFACES XII, PROCEEDINGS, 2007, 4647 : 42 - +
  • [12] Interior improvement of piecewise linear interpolants defined over Delaunay triangulations
    Lasser, D
    Stuttgen, T
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 36 (04) : 21 - 36
  • [13] Interior improvement of piecewise linear interpolants defined over Delaunay triangulations
    Lasser, D.
    Stuettgen, T.
    Computers and Mathematics with Applications, 1998, 36 (04): : 21 - 36
  • [14] Boundary improvement of piecewise linear interpolants defined over Delaunay triangulations
    Lasser, D
    Stuttgen, T
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 32 (10) : 43 - 58
  • [15] ESTIMATE OF THE BEZOUT NUMBER FOR LINEAR PIECEWISE ALGEBRAIC CURVES OVER ARBITRARY TRIANGULATIONS
    Wang, Shaofan
    Wang, Renhong
    Kong, Dehui
    Yin, Baocai
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (02) : 561 - 582
  • [16] DATA DEPENDENT TRIANGULATIONS FOR PIECEWISE LINEAR INTERPOLATION
    DYN, N
    LEVIN, D
    RIPPA, S
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1990, 10 (01) : 137 - 154
  • [17] A closed form type reduction method for piecewise linear interval type-2 fuzzy sets
    Ulu, Cenk
    Guzelkaya, Mujde
    Eksin, Ibrahim
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2013, 54 (09) : 1421 - 1433
  • [18] BOUNDARY CORRECTION FOR PIECEWISE LINEAR INTERPOLATION DEFINED OVER DATA-DEPENDENT TRIANGULATIONS
    DYN, N
    LEVIN, D
    RIPPA, S
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 39 (02) : 179 - 192
  • [19] Accuracy Raising Technique for Multivariate Spline Quasi-Interpolants over Type-2 Triangulations
    Shenggang ZHANG
    Chungang ZHU
    Qinjiao GAO
    Journal of Mathematical Research with Applications, 2022, 42 (03) : 318 - 330
  • [20] A Piecewise Type-2 Fuzzy Regression Model
    Bajestani, Narges Shafaei
    Kamyad, Ali Vahidian
    Zare, Assef
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2017, 10 (01) : 734 - 744