Virtual genetic diagnosis for familial hypercholesterolemia powered by machine learning

被引:32
|
作者
Pina, Ana [1 ,2 ,3 ]
Helgadottir, Saga [4 ]
Mancina, Rosellina Margherita [5 ]
Pavanello, Chiara [6 ]
Pirazzi, Carlo [7 ]
Montalcini, Tiziana [8 ]
Henriques, Roberto [9 ]
Calabresi, Laura [6 ]
Wiklund, Olov [5 ]
Macedo, M. Paula [1 ,2 ,3 ]
Valenti, Luca [10 ,11 ]
Volpe, Giovanni [4 ]
Romeo, Stefano [5 ,7 ,8 ]
机构
[1] Univ Nova Lisboa, NOVA Med Sch, CEDOC, Fac Ciencias Med, Lisbon, Portugal
[2] Portuguese Diabet Assoc, Educ & Res Ctr APDP ERC, Lisbon, Portugal
[3] Univ Aveiro, Dept Med Sci, Aveiro, Portugal
[4] Univ Gothenburg, Dept Phys, Gothenburg, Sweden
[5] Univ Gothenburg, Sahlgrenska Acad, Inst Med, Wallenberg Lab,Dept Mol & Clin Med, Bruna Straket 16, SE-41345 Gothenburg, Sweden
[6] Univ Milan, Ctr E Grossi Paoletti, Dipartimento Sci Farmacol & Biomol, Milan, Italy
[7] Sahlgrens Univ Hosp, Dept Cardiol, Gothenburg, Sweden
[8] Magna Graecia Univ Catanzaro, Dept Med & Surg Sci, Clin Nutr Unit, Catanzaro, Italy
[9] NOVA Informat Management Sch, Campus Campolide, Lisbon, Portugal
[10] Univ Milan, Fdn IRCCS CaGranda Osped Maggiore Policlin, Dept Transfus Med & Hematol, Translat Med, Milan, Italy
[11] Univ Milan, Dept Pathophysiol & Transplantat, Milan, Italy
基金
瑞典研究理事会; 欧盟地平线“2020”;
关键词
Familial hypercholesterolemia; prediction model; machine learning; dyslipidemia; cardiovascular disease; FATTY LIVER; POPULATION; DYSLIPIDEMIA; METABOLISM;
D O I
10.1177/2047487319898951
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Familial hypercholesterolemia (FH) is the most common genetic disorder of lipid metabolism. The gold standard for FH diagnosis is genetic testing, available, however, only in selected university hospitals. Clinical scores - for example, the Dutch Lipid Score - are often employed as alternative, more accessible, albeit less accurate FH diagnostic tools. The aim of this study is to obtain a more reliable approach to FH diagnosis by a "virtual" genetic test using machine-learning approaches. Methods and results We used three machine-learning algorithms (a classification tree (CT), a gradient boosting machine (GBM), a neural network (NN)) to predict the presence of FH-causative genetic mutations in two independent FH cohorts: the FH Gothenburg cohort (split into training data (N = 174) and internal test (N = 74)) and the FH-CEGP Milan cohort (external test, N = 364). By evaluating their area under the receiver operating characteristic (AUROC) curves, we found that the three machine-learning algorithms performed better (AUROC 0.79 (CT), 0.83 (GBM), and 0.83 (NN) on the Gothenburg cohort, and 0.70 (CT), 0.78 (GBM), and 0.76 (NN) on the Milan cohort) than the clinical Dutch Lipid Score (AUROC 0.68 and 0.64 on the Gothenburg and Milan cohorts, respectively) in predicting carriers of FH-causative mutations. Conclusion In the diagnosis of FH-causative genetic mutations, all three machine-learning approaches we have tested outperform the Dutch Lipid Score, which is the clinical standard. We expect these machine-learning algorithms to provide the tools to implement a virtual genetic test of FH. These tools might prove particularly important for lipid clinics without access to genetic testing.
引用
收藏
页码:1639 / 1646
页数:8
相关论文
共 50 条
  • [41] Familial hypercholesterolemia: A challenge of diagnosis and therapy
    Sibley, C
    Stone, NJ
    CLEVELAND CLINIC JOURNAL OF MEDICINE, 2006, 73 (01) : 57 - 64
  • [42] Familial Hypercholesterolemia—Epidemiology, Diagnosis, and Screening
    Siddharth Singh
    Vera Bittner
    Current Atherosclerosis Reports, 2015, 17
  • [43] GENE PROBES IN DIAGNOSIS OF FAMILIAL HYPERCHOLESTEROLEMIA
    HUMPHRIES, S
    TAYLOR, R
    JEENAH, M
    DUNNING, A
    HORSTHEMKE, B
    SEED, M
    SCHUSTER, H
    WOLFRAM, G
    ARTERIOSCLEROSIS, 1989, 9 (01): : I59 - I65
  • [44] FAMILIAL HYPERCHOLESTEROLEMIA - A GENETIC AND METABOLIC STUDY
    HARLAN, WR
    GRAHAM, JB
    ESTES, EH
    MEDICINE, 1966, 45 (02) : 77 - &
  • [45] FAMILIAL HYPERCHOLESTEROLEMIA - A GENETIC RECEPTOR DISEASE
    GOLDSTEIN, JL
    BROWN, MS
    HOSPITAL PRACTICE, 1985, 20 (11): : 35 - &
  • [46] Genetic Testing in Familial Hypercholesterolemia: Is It for Everyone?
    A. M. Medeiros
    M. Bourbon
    Current Atherosclerosis Reports, 2023, 25 : 127 - 132
  • [47] Clinical Genetic Testing for Familial Hypercholesterolemia
    Sturm, Amy C.
    Knowles, Joshua W.
    Gidding, Samuel S.
    Ahmad, Zahid S.
    Ahmed, Catherine D.
    Ballantyne, Christie M.
    Baum, Seth J.
    Bourbon, Mafalda
    Carrie, Alain
    Cuchel, Marina
    de Ferranti, Sarah D.
    Defesche, Joep C.
    Freiberger, Tomas
    Hershberger, Ray E.
    Hovingh, G. Kees
    Karayan, Lala
    Kastelein, Johannes Jacob Pieter
    Kindt, Iris
    Lane, Stacey R.
    Leigh, Sarah E.
    Linton, MacRae F.
    Mata, Pedro
    Neal, William A.
    Nordestgaard, Borge G.
    Santos, Raul D.
    Harada-Shiba, Mariko
    Sijbrands, Eric J.
    Stitziel, Nathan O.
    Yamashita, Shizuya
    Wilemon, Katherine A.
    Ledbetter, David H.
    Rader, Daniel J.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2018, 72 (06) : 662 - 680
  • [48] Genetic characterization of familial hypercholesterolemia in Sweden
    Lind, S
    Jiao, H
    Lindgren, CM
    Eriksson, M
    Eggertsen, G
    Kere, J
    Angelin, B
    CLINICA CHIMICA ACTA, 2005, 355 : S92 - S92
  • [49] FAMILIAL HYPERCHOLESTEROLEMIA - A GENETIC AND METABOLIC STUDY
    HARLAN, WR
    GRAHAM, JH
    ESTES, EH
    ANNALS OF INTERNAL MEDICINE, 1965, 63 (05) : 915 - +
  • [50] The genetic spectrum of familial hypercholesterolemia in Pakistan
    Ahmed, Waqas
    Whittall, Ros
    Riaz, Moeen
    Ajmal, Muhammad
    Sadeque, Ahmed
    Ayub, Humaira
    Qamar, Raheel
    Humphries, Steve E.
    CLINICA CHIMICA ACTA, 2013, 421 : 219 - 225