Virtual genetic diagnosis for familial hypercholesterolemia powered by machine learning

被引:32
|
作者
Pina, Ana [1 ,2 ,3 ]
Helgadottir, Saga [4 ]
Mancina, Rosellina Margherita [5 ]
Pavanello, Chiara [6 ]
Pirazzi, Carlo [7 ]
Montalcini, Tiziana [8 ]
Henriques, Roberto [9 ]
Calabresi, Laura [6 ]
Wiklund, Olov [5 ]
Macedo, M. Paula [1 ,2 ,3 ]
Valenti, Luca [10 ,11 ]
Volpe, Giovanni [4 ]
Romeo, Stefano [5 ,7 ,8 ]
机构
[1] Univ Nova Lisboa, NOVA Med Sch, CEDOC, Fac Ciencias Med, Lisbon, Portugal
[2] Portuguese Diabet Assoc, Educ & Res Ctr APDP ERC, Lisbon, Portugal
[3] Univ Aveiro, Dept Med Sci, Aveiro, Portugal
[4] Univ Gothenburg, Dept Phys, Gothenburg, Sweden
[5] Univ Gothenburg, Sahlgrenska Acad, Inst Med, Wallenberg Lab,Dept Mol & Clin Med, Bruna Straket 16, SE-41345 Gothenburg, Sweden
[6] Univ Milan, Ctr E Grossi Paoletti, Dipartimento Sci Farmacol & Biomol, Milan, Italy
[7] Sahlgrens Univ Hosp, Dept Cardiol, Gothenburg, Sweden
[8] Magna Graecia Univ Catanzaro, Dept Med & Surg Sci, Clin Nutr Unit, Catanzaro, Italy
[9] NOVA Informat Management Sch, Campus Campolide, Lisbon, Portugal
[10] Univ Milan, Fdn IRCCS CaGranda Osped Maggiore Policlin, Dept Transfus Med & Hematol, Translat Med, Milan, Italy
[11] Univ Milan, Dept Pathophysiol & Transplantat, Milan, Italy
基金
瑞典研究理事会; 欧盟地平线“2020”;
关键词
Familial hypercholesterolemia; prediction model; machine learning; dyslipidemia; cardiovascular disease; FATTY LIVER; POPULATION; DYSLIPIDEMIA; METABOLISM;
D O I
10.1177/2047487319898951
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Familial hypercholesterolemia (FH) is the most common genetic disorder of lipid metabolism. The gold standard for FH diagnosis is genetic testing, available, however, only in selected university hospitals. Clinical scores - for example, the Dutch Lipid Score - are often employed as alternative, more accessible, albeit less accurate FH diagnostic tools. The aim of this study is to obtain a more reliable approach to FH diagnosis by a "virtual" genetic test using machine-learning approaches. Methods and results We used three machine-learning algorithms (a classification tree (CT), a gradient boosting machine (GBM), a neural network (NN)) to predict the presence of FH-causative genetic mutations in two independent FH cohorts: the FH Gothenburg cohort (split into training data (N = 174) and internal test (N = 74)) and the FH-CEGP Milan cohort (external test, N = 364). By evaluating their area under the receiver operating characteristic (AUROC) curves, we found that the three machine-learning algorithms performed better (AUROC 0.79 (CT), 0.83 (GBM), and 0.83 (NN) on the Gothenburg cohort, and 0.70 (CT), 0.78 (GBM), and 0.76 (NN) on the Milan cohort) than the clinical Dutch Lipid Score (AUROC 0.68 and 0.64 on the Gothenburg and Milan cohorts, respectively) in predicting carriers of FH-causative mutations. Conclusion In the diagnosis of FH-causative genetic mutations, all three machine-learning approaches we have tested outperform the Dutch Lipid Score, which is the clinical standard. We expect these machine-learning algorithms to provide the tools to implement a virtual genetic test of FH. These tools might prove particularly important for lipid clinics without access to genetic testing.
引用
收藏
页码:1639 / 1646
页数:8
相关论文
共 50 条
  • [31] GENETIC DIAGNOSIS OF FAMILIAL HYPERCHOLESTEROLEMIA (FH) AND LDL-CHOLESTEROL GOAL ACHIEVEMENT
    Alonso, R.
    Villar, J.
    Fuentes, F.
    Zambon, D.
    Mata, P.
    ATHEROSCLEROSIS SUPPLEMENTS, 2009, 10 (02)
  • [32] PRENATAL DIAGNOSIS OF HOMOZYGOUS FAMILIAL HYPERCHOLESTEROLEMIA - EXPRESSION OF A GENETIC RECEPTOR DISEASE IN UTERO
    BROWN, MS
    GOLDSTEIN, JL
    VANDENBERGHE, K
    FRYNS, JP
    KOVANEN, PT
    EECKELS, R
    VANDENBERGHE, H
    CASSIMAN, JJ
    LANCET, 1978, 1 (8063): : 526 - 529
  • [33] Genetic spectrum of familial hypercholesterolemia and correlations with clinical expression: Implications for diagnosis improvement
    Di Taranto, Maria Donata
    Giacobbe, Carola
    Palma, Daniela
    Iannuzzo, Gabriella
    Gentile, Marco
    Calcaterra, Ilenia
    Guardamagna, Ornella
    Auricchio, Renata
    Di Minno, Matteo Nicola Dario
    Fortunato, Giuliana
    CLINICAL GENETICS, 2021, 100 (05) : 529 - 541
  • [34] Genetic diagnosis of familial hypercholesterolemia using a DNA-array based platform
    Alonso, Rodrigo
    Defesche, Joep C.
    Tejedor, Diego
    Castillo, Sergio
    Stef, Marianne
    Mata, Nelva
    Gomez-Enterria, Pilar
    Martinez-Faedo, Ceferino
    Forga, Lluis
    Mata, Pedro
    CLINICAL BIOCHEMISTRY, 2009, 42 (09) : 899 - 903
  • [35] Finding missed cases of familial hypercholesterolemia in health systems using machine learning
    Juan M. Banda
    Ashish Sarraju
    Fahim Abbasi
    Justin Parizo
    Mitchel Pariani
    Hannah Ison
    Elinor Briskin
    Hannah Wand
    Sebastien Dubois
    Kenneth Jung
    Seth A. Myers
    Daniel J. Rader
    Joseph B. Leader
    Michael F. Murray
    Kelly D. Myers
    Katherine Wilemon
    Nigam H. Shah
    Joshua W. Knowles
    npj Digital Medicine, 2
  • [36] Finding missed cases of familial hypercholesterolemia in health systems using machine learning
    Banda, Juan M.
    Sarraju, Ashish
    Abbasi, Fahim
    Parizo, Justin
    Pariani, Mitchel
    Ison, Hannah
    Briskin, Elinor
    Wand, Hannah
    Dubois, Sebastien
    Jung, Kenneth
    Myers, Seth A.
    Rader, Daniel J.
    Leader, Joseph B.
    Murray, Michael F.
    Myers, Kelly D.
    Wilemon, Katherine
    Shah, Nigam H.
    Knowles, Joshua W.
    NPJ DIGITAL MEDICINE, 2019, 2 (1)
  • [37] Genetic and molecular architecture of familial hypercholesterolemia
    Abifadel, Marianne
    Boileau, Catherine
    JOURNAL OF INTERNAL MEDICINE, 2023, 293 (02) : 144 - 165
  • [38] Genetic Testing in Familial Hypercholesterolemia: Is It for Everyone?
    Medeiros, A. M.
    Bourbon, M.
    CURRENT ATHEROSCLEROSIS REPORTS, 2023, 25 (04) : 127 - 132
  • [39] GENETIC ANALYSIS OF FAMILIAL HYPERCHOLESTEROLEMIA IN MEXICO
    Cardenas, A. Vazquez
    Torres, M. T. Magana
    Lopez, Y. Sanchez
    Flores, T. Hernandez
    Fausto, A. G. Colima
    Garcia, J. R. Gonzalez
    Escalante, F.
    Marines, D. Gonzalez
    Salinas, C. Aguilar
    Bourbon, M.
    ATHEROSCLEROSIS, 2016, 252 : E39 - E39
  • [40] Genetic considerations in the treatment of familial hypercholesterolemia
    Moyer, Ann M.
    Baudhuin, Linnea M.
    CLINICAL LIPIDOLOGY, 2015, 10 (05) : 387 - 403