Virtual genetic diagnosis for familial hypercholesterolemia powered by machine learning

被引:32
|
作者
Pina, Ana [1 ,2 ,3 ]
Helgadottir, Saga [4 ]
Mancina, Rosellina Margherita [5 ]
Pavanello, Chiara [6 ]
Pirazzi, Carlo [7 ]
Montalcini, Tiziana [8 ]
Henriques, Roberto [9 ]
Calabresi, Laura [6 ]
Wiklund, Olov [5 ]
Macedo, M. Paula [1 ,2 ,3 ]
Valenti, Luca [10 ,11 ]
Volpe, Giovanni [4 ]
Romeo, Stefano [5 ,7 ,8 ]
机构
[1] Univ Nova Lisboa, NOVA Med Sch, CEDOC, Fac Ciencias Med, Lisbon, Portugal
[2] Portuguese Diabet Assoc, Educ & Res Ctr APDP ERC, Lisbon, Portugal
[3] Univ Aveiro, Dept Med Sci, Aveiro, Portugal
[4] Univ Gothenburg, Dept Phys, Gothenburg, Sweden
[5] Univ Gothenburg, Sahlgrenska Acad, Inst Med, Wallenberg Lab,Dept Mol & Clin Med, Bruna Straket 16, SE-41345 Gothenburg, Sweden
[6] Univ Milan, Ctr E Grossi Paoletti, Dipartimento Sci Farmacol & Biomol, Milan, Italy
[7] Sahlgrens Univ Hosp, Dept Cardiol, Gothenburg, Sweden
[8] Magna Graecia Univ Catanzaro, Dept Med & Surg Sci, Clin Nutr Unit, Catanzaro, Italy
[9] NOVA Informat Management Sch, Campus Campolide, Lisbon, Portugal
[10] Univ Milan, Fdn IRCCS CaGranda Osped Maggiore Policlin, Dept Transfus Med & Hematol, Translat Med, Milan, Italy
[11] Univ Milan, Dept Pathophysiol & Transplantat, Milan, Italy
基金
瑞典研究理事会; 欧盟地平线“2020”;
关键词
Familial hypercholesterolemia; prediction model; machine learning; dyslipidemia; cardiovascular disease; FATTY LIVER; POPULATION; DYSLIPIDEMIA; METABOLISM;
D O I
10.1177/2047487319898951
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Familial hypercholesterolemia (FH) is the most common genetic disorder of lipid metabolism. The gold standard for FH diagnosis is genetic testing, available, however, only in selected university hospitals. Clinical scores - for example, the Dutch Lipid Score - are often employed as alternative, more accessible, albeit less accurate FH diagnostic tools. The aim of this study is to obtain a more reliable approach to FH diagnosis by a "virtual" genetic test using machine-learning approaches. Methods and results We used three machine-learning algorithms (a classification tree (CT), a gradient boosting machine (GBM), a neural network (NN)) to predict the presence of FH-causative genetic mutations in two independent FH cohorts: the FH Gothenburg cohort (split into training data (N = 174) and internal test (N = 74)) and the FH-CEGP Milan cohort (external test, N = 364). By evaluating their area under the receiver operating characteristic (AUROC) curves, we found that the three machine-learning algorithms performed better (AUROC 0.79 (CT), 0.83 (GBM), and 0.83 (NN) on the Gothenburg cohort, and 0.70 (CT), 0.78 (GBM), and 0.76 (NN) on the Milan cohort) than the clinical Dutch Lipid Score (AUROC 0.68 and 0.64 on the Gothenburg and Milan cohorts, respectively) in predicting carriers of FH-causative mutations. Conclusion In the diagnosis of FH-causative genetic mutations, all three machine-learning approaches we have tested outperform the Dutch Lipid Score, which is the clinical standard. We expect these machine-learning algorithms to provide the tools to implement a virtual genetic test of FH. These tools might prove particularly important for lipid clinics without access to genetic testing.
引用
收藏
页码:1639 / 1646
页数:8
相关论文
共 50 条
  • [1] Genetic backgrounds and diagnosis of familial hypercholesterolemia
    Rogozik, Joanna
    Glowczynska, Renata
    Grabowski, Marcin
    CLINICAL GENETICS, 2024, 105 (01) : 3 - 12
  • [2] Significance of Genetic Diagnosis of Familial Hypercholesterolemia
    Kawashiri, Masa-aki
    Tada, Hayato
    Yamagishi, Masakazu
    JOURNAL OF ATHEROSCLEROSIS AND THROMBOSIS, 2016, 23 (05) : 554 - 556
  • [3] Genetic Diagnosis in Familial Hypercholesterolemia - yes
    Maerz, Winfried
    DEUTSCHE MEDIZINISCHE WOCHENSCHRIFT, 2017, 142 (09) : 687 - 688
  • [4] Genetic Diagnosis of Familial Hypercholesterolemia in Asia
    Huang, Chin-Chou
    Charng, Min-Ji
    FRONTIERS IN GENETICS, 2020, 11
  • [5] Applications of machine learning in familial hypercholesterolemia
    Luo, Ren-Fei
    Wang, Jing-Hui
    Hu, Li-Juan
    Fu, Qing-An
    Zhang, Si-Yi
    Jiang, Long
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2023, 10
  • [6] THE NAME OF THE GAME: IMPLICATIONS OF DIAGNOSIS THROUGH MACHINE LEARNING FOR PATIENTS WITH FAMILIAL HYPERCHOLESTEROLEMIA
    Kim, Kain
    Faruque, Samir C.
    Kulp, David
    Lam, Shivani
    Sperling, Laurence S.
    Eapen, Danny J.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (13) : 2009 - 2009
  • [7] Genetic diagnosis of familial, hypercholesterolemia in Han Chinese
    Chiou, Kuan-Rau
    Charng, Min-Ji
    JOURNAL OF CLINICAL LIPIDOLOGY, 2016, 10 (03) : 490 - 496
  • [8] Genetic screening to improve the diagnosis of familial hypercholesterolemia
    Faiz, Fathimath
    Nguyen, Lan T.
    van Bockxmeer, Frank M.
    Hooper, Amanda J.
    CLINICAL LIPIDOLOGY, 2014, 9 (05) : 523 - 532
  • [9] GENETIC-ASPECTS OF FAMILIAL HYPERCHOLESTEROLEMIA AND ITS DIAGNOSIS
    MOTULSKY, AG
    ARTERIOSCLEROSIS, 1989, 9 (01): : I3 - I7
  • [10] Comparison of Genetic Versus Clinical Diagnosis in Familial Hypercholesterolemia
    Civeira, Fernando
    Ros, Emilio
    Jarauta, Estibaliz
    Plana, Nuria
    Zambon, Daniel
    Puzo, Jose
    Martinez de Esteban, Juan P.
    Ferrando, Juan
    Zabala, Sergio
    Almagro, Fatima
    Gimeno, Jose A.
    Masana, Luis
    Pocovi, Miguel
    AMERICAN JOURNAL OF CARDIOLOGY, 2008, 102 (09): : 1187 - 1193