Indoor Video Flame Detection Based on Lightweight Convolutional Neural Network

被引:10
|
作者
Yang, Zhikai [1 ]
Bu, Leping [1 ]
Wang, Teng [1 ]
Yuan, Peng [1 ]
Ouyang Jineng [1 ]
机构
[1] Naval Univ Engn, Coll Elect Engn, Wuhan 430033, Peoples R China
基金
中国国家自然科学基金;
关键词
flame alarm; convolutional neural network; simple recurrent unit; 3D convolutional layer; FIRE; RECOGNITION;
D O I
10.1134/S1054661820030293
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
At present, all CNN-based fire detection algorithms identify fire by means of a single frame image, all of which demonstrate low accuracy under strong interferences or complex backgrounds such as flickering light or backgrounds with high level of brightness. To increase the accuracy of fire detection, this paper presents a neural network model which combines lightweight CNN with SRU. In this algorithm, the scene content is extracted by CNN and the dynamic characteristics of the flames are extracted from sequential frames. In this paper, Resnet18+SRU (V1-type) and Mobilenets+SRU (V2-type) are proposed. Based on the characteristics of flames at a fixed position within a short period of time, a 3D convolutional layer is added between the Mobilenets and the SRU in the V2-type model, resulting in the V3-type model. Based on a cross validation set containing multiple types of interference in an indoor environment, experiments were conducted to compare the three models proposed in this paper with other models. The experiment results showed that the accuracy of the method proposed in this paper is above 96%, about 25% higher than the accuracy of CNN-based fire alarm via single-frame image, and that the V3-type models with 3D convolutional layer has the highest accuracy and best overall performance.
引用
收藏
页码:551 / 564
页数:14
相关论文
共 50 条
  • [41] Fire Detection in Infrared Video Surveillance Based on Convolutional Neural Network and SVM
    Wang, Kewei
    Zhang, Yongming
    Wang, Jinjun
    Zhang, Qixing
    Chen, Bing
    Liu, Dongcai
    2018 IEEE 3RD INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP), 2018, : 162 - 167
  • [42] Using lightweight convolutional neural network to track vibrationdisplacement in rotating body video
    Yang, Rongliang
    Wang, Sen
    Wu, Xing
    Liu, Tao
    Liu, Xiaoqin
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 177
  • [43] A Lightweight Neural Network for Loop Closure Detection in Indoor Visual SLAM
    Deyang Zhou
    Yazhe Luo
    Qinhan Zhang
    Ying Xu
    Diansheng Chen
    Xiaochuan Zhang
    International Journal of Computational Intelligence Systems, 16
  • [44] A Lightweight Neural Network for Loop Closure Detection in Indoor Visual SLAM
    Zhou, Deyang
    Luo, Yazhe
    Zhang, Qinhan
    Xu, Ying
    Chen, Diansheng
    Zhang, Xiaochuan
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [45] An efficient lightweight convolutional neural network for industrial surface defect detection
    Zhang, Dehua
    Hao, Xinyuan
    Wang, Dechen
    Qin, Chunbin
    Zhao, Bo
    Liang, Linlin
    Liu, Wei
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (09) : 10651 - 10677
  • [46] Application of Lightweight Convolutional Neural Network for Damage Detection of Conveyor Belt
    Zhang, Mengchao
    Zhang, Yuan
    Zhou, Manshan
    Jiang, Kai
    Shi, Hao
    Yu, Yan
    Hao, Nini
    APPLIED SCIENCES-BASEL, 2021, 11 (16):
  • [47] A Lightweight Convolutional Neural Network for Ship Target Detection in SAR Images
    Hao, Yisheng
    Zhang, Ying
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (02) : 1882 - 1898
  • [48] An efficient lightweight convolutional neural network for industrial surface defect detection
    Dehua Zhang
    Xinyuan Hao
    Dechen Wang
    Chunbin Qin
    Bo Zhao
    Linlin Liang
    Wei Liu
    Artificial Intelligence Review, 2023, 56 : 10651 - 10677
  • [49] A lightweight 3D convolutional neural network for deepfake detection
    Liu, Jiarui
    Zhu, Kaiman
    Lu, Wei
    Luo, Xiangyang
    Zhao, Xianfeng
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (09) : 4990 - 5004
  • [50] LightMixer: A novel lightweight convolutional neural network for tomato disease detection
    Zhong, Yi
    Teng, Zihan
    Tong, Mengjun
    FRONTIERS IN PLANT SCIENCE, 2023, 14