LightMixer: A novel lightweight convolutional neural network for tomato disease detection

被引:12
|
作者
Zhong, Yi [1 ]
Teng, Zihan [2 ]
Tong, Mengjun [1 ]
机构
[1] Zhejiang A&F Univ, Coll Math & Comp Sci, Hangzhou, Peoples R China
[2] Hong Kong Polytech Univ, Sch Design, Hong Kong, Peoples R China
来源
关键词
tomato leaf disease; lightweight model; convolutional neural networks; deep learning; disease detection;
D O I
10.3389/fpls.2023.1166296
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Tomatoes are among the very important crops grown worldwide. However, tomato diseases can harm the health of tomato plants during growth and reduce tomato yields over large areas. The development of computer vision technology offers the prospect of solving this problem. However, traditional deep learning algorithms require a high computational cost and several parameters. Therefore, a lightweight tomato leaf disease identification model called LightMixer was designed in this study. The LightMixer model comprises a depth convolution with a Phish module and a light residual module. Depth convolution with the Phish module represents a lightweight convolution module designed to splice nonlinear activation functions with depth convolution as the backbone; it also focuses on lightweight convolutional feature extraction to facilitate deep feature fusion. The light residual module was built based on lightweight residual blocks to accelerate the computational efficiency of the entire network architecture and reduce the information loss of disease features. Experimental results show that the proposed LightMixer model achieved 99.3% accuracy on public datasets while requiring only 1.5 M parameters, an improvement over other classical convolutional neural network and lightweight models, and can be used for automatic tomato leaf disease identification on mobile devices.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Detection of leaf disease in tomato plants using a lightweight parallel deep convolutional neural network
    Deshpande, Rashmi
    Patidar, Hemant
    ARCHIVES OF PHYTOPATHOLOGY AND PLANT PROTECTION, 2023, 56 (09) : 707 - 720
  • [2] LSGNet: A lightweight convolutional neural network model for tomato disease identification
    Yang, Shengxian
    Zhang, Licai
    Lin, Jianwu
    Cernava, Tomislav
    Cai, Jitong
    Pan, Renyong
    Liu, Jiaming
    Wen, Xingtian
    Chen, Xiaoyulong
    Zhang, Xin
    CROP PROTECTION, 2024, 182
  • [3] A lightweight convolutional neural network for disease detection of fruit leaves
    Hari, Pragya
    Singh, Maheshwari Prasad
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (20): : 14855 - 14866
  • [4] A lightweight convolutional neural network for disease detection of fruit leaves
    Pragya Hari
    Maheshwari Prasad Singh
    Neural Computing and Applications, 2023, 35 : 14855 - 14866
  • [5] AlexNet Convolutional Neural Network for Disease Detection and Classification of Tomato Leaf
    Chen, Hsing-Chung
    Widodo, Agung Mulyo
    Wisnujati, Andika
    Rahaman, Mosiur
    Lin, Jerry Chun-Wei
    Chen, Liukui
    Weng, Chien-Erh
    ELECTRONICS, 2022, 11 (06)
  • [6] Detection and Classification of Tomato Crop Disease Using Convolutional Neural Network
    Sakkarvarthi, Gnanavel
    Sathianesan, Godfrey Winster
    Murugan, Vetri Selvan
    Reddy, Avulapalli Jayaram
    Jayagopal, Prabhu
    Elsisi, Mahmoud
    ELECTRONICS, 2022, 11 (21)
  • [7] The performance comparison of pre-trained networks with the proposed lightweight convolutional neural network for disease detection in tomato leaves
    Ecemis, Irem Nur
    Ilhan, Hamza Osman
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2023, 38 (02): : 693 - 705
  • [8] A novel lightweight deep convolutional neural network for early detection of oral cancer
    Jubair, Fahed
    Al-karadsheh, Omar
    Malamos, Dimitrios
    Al Mahdi, Samara
    Saad, Yusser
    Hassona, Yazan
    ORAL DISEASES, 2022, 28 (04) : 1123 - 1130
  • [9] Lightweight Object Detection Network Based on Convolutional Neural Network
    Cheng Yequn
    Yan, Wang
    Fan Yuying
    Li Baoqing
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (16)
  • [10] DFCANet: A Novel Lightweight Convolutional Neural Network Model for Corn Disease Identification
    Chen, Yang
    Chen, Xiaoyulong
    Lin, Jianwu
    Pan, Renyong
    Cao, Tengbao
    Cai, Jitong
    Yu, Dianzhi
    Cernava, Tomislav
    Zhang, Xin
    AGRICULTURE-BASEL, 2022, 12 (12):