First order phase transitions and the thermodynamic limit

被引:24
|
作者
Thiele, Uwe [1 ,2 ,3 ]
Frohoff-Huelsmann, Tobias [1 ]
Engelnkemper, Sebastian [1 ]
Knobloch, Edgar [4 ]
Archer, Andrew J. [5 ,6 ]
机构
[1] Westfalische Wilhelms Univ Munster, Inst Theoret Phys, Wilhelm Klemm Str 9, D-48149 Munster, Germany
[2] Westfalische Wilhelms Univ Munster, Ctr Nonlinear Sci CeNoS, Corrensstr 2, D-48149 Munster, Germany
[3] Westfalische Wilhelms Univ, CMTC, Corrensstr 40, D-48149 Munster, Germany
[4] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[5] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[6] Loughborough Univ, Interdisciplinary Ctr Math Modelling, Loughborough LE11 3TU, Leics, England
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
Maxwell construction; mean-field models; localized structures; phase separation; colloidal crystallization; Cahn-Hilliard model; phase field crystal model; PATTERN-FORMATION; BIFURCATION; INSTABILITY; DYNAMICS; SNAKING;
D O I
10.1088/1367-2630/ab5caf
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider simple mean field continuum models for first order liquid-liquid demixing and solid-liquid phase transitions and show how the Maxwell construction at phase coexistence emerges on going from finite-size closed systems to the thermodynamic limit. The theories considered are the Cahn-Hilliard model of phase separation, which is also a model for the liquid-gas transition, and the phase field crystal model of the solid-liquid transition. Our results show that states comprising the Maxwell line depend strongly on the mean density with spatially localized structures playing a key role in the approach to the thermodynamic limit.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] On the multidimensional theory of the first-order phase transitions
    Fateev, MP
    PHYSICS OF THE SOLID STATE, 2002, 44 (12) : 2318 - 2322
  • [42] Formation of domain walls in first order phase transitions
    Garcia, J. L.
    Melfo, A.
    Pantoja, N.
    REVISTA MEXICANA DE FISICA, 2006, 52 (03) : 123 - 126
  • [43] First-order phase transitions in ferroelectric films
    Tan, EK
    Osman, J
    Tilley, DR
    SOLID STATE COMMUNICATIONS, 2000, 116 (02) : 61 - 65
  • [44] On energy dissipation at first-order phase transitions
    Dumachev, VN
    Nechaev, VN
    IZVESTIYA AKADEMII NAUK SERIYA FIZICHESKAYA, 1997, 61 (05): : 874 - 876
  • [45] Why first order quantum phase transitions are interesting
    Pfleiderer, C
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (11) : S987 - S997
  • [46] NANOGrav results and dark first order phase transitions
    Andrea Addazi
    Yi-Fu Cai
    Qingyu Gan
    Antonino Marciano
    Kaiqiang Zeng
    Science China Physics, Mechanics & Astronomy, 2021, 64
  • [47] Multivariable kinetic theory of the first order phase transitions
    Alekseechkin, NV
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (12):
  • [48] Defect formation in first order phase transitions with damping
    Ferrera, A
    PHYSICAL REVIEW D, 1998, 57 (12): : 7130 - 7138
  • [49] Dynamic scaling for first-order phase transitions
    Özoguz, BE
    Gündüç, Y
    Aydin, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2000, 11 (03): : 553 - 559
  • [50] A Bayesian Interpretation of First-Order Phase Transitions
    Davis, Sergio
    Peralta, Joaquin
    Navarrete, Yasmin
    Gonzalez, Diego
    Gutierrez, Gonzalo
    FOUNDATIONS OF PHYSICS, 2016, 46 (03) : 350 - 359