First order phase transitions and the thermodynamic limit

被引:24
|
作者
Thiele, Uwe [1 ,2 ,3 ]
Frohoff-Huelsmann, Tobias [1 ]
Engelnkemper, Sebastian [1 ]
Knobloch, Edgar [4 ]
Archer, Andrew J. [5 ,6 ]
机构
[1] Westfalische Wilhelms Univ Munster, Inst Theoret Phys, Wilhelm Klemm Str 9, D-48149 Munster, Germany
[2] Westfalische Wilhelms Univ Munster, Ctr Nonlinear Sci CeNoS, Corrensstr 2, D-48149 Munster, Germany
[3] Westfalische Wilhelms Univ, CMTC, Corrensstr 40, D-48149 Munster, Germany
[4] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[5] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[6] Loughborough Univ, Interdisciplinary Ctr Math Modelling, Loughborough LE11 3TU, Leics, England
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
Maxwell construction; mean-field models; localized structures; phase separation; colloidal crystallization; Cahn-Hilliard model; phase field crystal model; PATTERN-FORMATION; BIFURCATION; INSTABILITY; DYNAMICS; SNAKING;
D O I
10.1088/1367-2630/ab5caf
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider simple mean field continuum models for first order liquid-liquid demixing and solid-liquid phase transitions and show how the Maxwell construction at phase coexistence emerges on going from finite-size closed systems to the thermodynamic limit. The theories considered are the Cahn-Hilliard model of phase separation, which is also a model for the liquid-gas transition, and the phase field crystal model of the solid-liquid transition. Our results show that states comprising the Maxwell line depend strongly on the mean density with spatially localized structures playing a key role in the approach to the thermodynamic limit.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Reclassification of thermal equilibrium phase-transitions in thermodynamic limit systems
    Wei, Lai
    Zhang, Li-Li
    Huang, Yi-Neng
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [32] Old phase remnants in first-order phase transitions
    Lu, Philip
    Kawana, Kiyoharu
    Xie, Ke-Pan
    PHYSICAL REVIEW D, 2022, 105 (12)
  • [33] A model with simultaneous first and second order phase transitions
    Messager, A
    Nachtergaele, B
    JOURNAL OF STATISTICAL PHYSICS, 2006, 122 (01) : 1 - 14
  • [34] First order electric and magnetic phase transitions in nanostructures
    Suzdalev I.P.
    Buravtsev V.N.
    Maksimov Y.V.
    Nikolaev A.N.
    Nanotechnologies in Russia, 2011, 6 (1-2): : 108 - 112
  • [35] FIRST-ORDER PHASE TRANSITIONS IN MULTISTRANDED MACROMOLECULES
    APPLEQUIST, J
    JOURNAL OF CHEMICAL PHYSICS, 1969, 50 (02): : 609 - +
  • [36] On the multidimensional theory of the first-order phase transitions
    M. P. Fateev
    Physics of the Solid State, 2002, 44 : 2318 - 2322
  • [37] FIRST-ORDER MAGNETIC PHASE-TRANSITIONS
    BROWN, HA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (04): : 542 - 542
  • [38] Scale and electroweak first-order phase transitions
    Kubo, Jisuke
    Yamada, Masatoshi
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2015, 2015 (09):
  • [39] A Bayesian Interpretation of First-Order Phase Transitions
    Sergio Davis
    Joaquín Peralta
    Yasmín Navarrete
    Diego González
    Gonzalo Gutiérrez
    Foundations of Physics, 2016, 46 : 350 - 359
  • [40] NANOGrav results and dark first order phase transitions
    Addazi, Andrea
    Cai, Yi-Fu
    Gan, Qingyu
    Marciano, Antonino
    Zeng, Kaiqiang
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2021, 64 (09)