Monolithic coupling of QCLs in evanescent waveguides on InP

被引:5
|
作者
Gilles, C. [1 ]
Maisons, G. [1 ]
Simozrag, B. [1 ]
Carras, M. [1 ]
机构
[1] III V Lab, F-91767 Palaiseau, France
关键词
QCL; evanescent coupling; indium phosphide; monolithic; adiabatic coupler; photonic integration; QUANTUM CASCADE LASER;
D O I
10.1117/12.2176531
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work we present a significant step toward monolithic multiplexed distributed feedback (DFB) quantum cascade lasers (QCL) array on indium phosphide (InP). A multi-wavelength DFB-QCL array evanescently coupled to an underlying InGaAs waveguide on iron doped InP wafer is presented. We introduce the design, optimization, simulation and fabrication of the adiabatic coupler ensuring high transfer efficiency from the active to the passive waveguide. The active region designed in 7 mu m - 10 mu m wavelength range is grown by molecular beam epitaxy on top of an InGaAs waveguide. Components are defined during postgrowth processing, which eliminates the need for material regrowth or bonding techniques. With the present design, one could realize a broadly tunable, mechanically robust, single-mode output source which can be used in spectroscopic applications.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Monolithic integration of lasers, photodiodes, waveguides and spot size converters on GaInAsP/InP for photonic IC applications
    Hamacher, M
    Kaiser, R
    Heidrich, H
    Albrecht, P
    Borchert, B
    Janiak, K
    Löffler, R
    Malchow, S
    Rehbein, W
    Schroeter-Janssen, H
    2000 INTERNATIONAL CONFERENCE ON INDIUM PHOSPHIDE AND RELATED MATERIALS, CONFERENCE PROCEEDINGS, 2000, : 21 - 24
  • [32] Evanescent coupling to chalcogenide glass photonic crystal waveguides via tapered microstructured optical fibre nanowires
    Grillet, C
    Moss, DJ
    Magi, E
    Freeman, D
    Madden, S
    Luther-Davies, B
    Eggleton, BJ
    2005 IEEE LEOS Annual Meeting Conference Proceedings (LEOS), 2005, : 316 - 317
  • [33] On-Chip Integration of Single Photon Sources via Evanescent Coupling of Tapered Nanowires to SiN Waveguides
    Mnaymneh, Khaled
    Dalacu, Dan
    McKee, Joseph
    Lapointe, Jean
    Haffouz, Sofiane
    Weber, John F.
    Northeast, David B.
    Poole, Philip J.
    Aers, Geof C.
    Williams, Robin L.
    ADVANCED QUANTUM TECHNOLOGIES, 2020, 3 (02)
  • [34] Entanglement Diversity in Monolithic Waveguides
    Kang, Dongpeng
    Kim, Minseok
    He, Haoyu
    Helmy, Amr S.
    2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [35] Control of directional evanescent coupling in fs laser written waveguides (vol 15, pg 1579, 2007)
    Szameit, Alexander
    Dreisow, Felix
    Pertsch, Thomas
    Nolte, Stefan
    Tuennermann, Andreas
    OPTICS EXPRESS, 2007, 15 (13): : 8492 - 8492
  • [36] InGaAsP/InP evanescent mode waveguide optical isolators and their application to InGaAsP/InP/Si hybrid evanescent optical isolators
    Hiromasa Shimizu
    Syunsuke Goto
    Optical and Quantum Electronics, 2009, 41 : 653 - 660
  • [37] Comparison of semi-insulating InAlAs and InP:Fe for InP-based buried-heterostructure QCLs
    Flores, Y. V.
    Aleksandrova, A.
    Elagin, M.
    Kischkat, J.
    Kurlov, S. S.
    Monastyrskyi, G.
    Hellemann, J.
    Golovynskyi, S. L.
    Dacenko, O. I.
    Kondratenko, S. V.
    Tarasov, G. G.
    Semtsiv, M. P.
    Masselink, W. T.
    JOURNAL OF CRYSTAL GROWTH, 2015, 425 : 360 - 363
  • [38] InGaAsP/InP evanescent mode waveguide optical isolators and their application to InGaAsP/InP/Si hybrid evanescent optical isolators
    Shimizu, Hiromasa
    Goto, Syunsuke
    OPTICAL AND QUANTUM ELECTRONICS, 2009, 41 (09) : 653 - 660
  • [39] 60- and 77-GHz monolithic amplifiers utilizing InP-based HEMTs and coplanar waveguides
    Berg, M
    Dickmann, J
    Guehl, R
    Bischof, W
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1996, 11 (03) : 139 - 145
  • [40] Application of the CFSPML to the absorption of evanescent waves in waveguides
    Bérenger, JP
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2002, 12 (06) : 218 - 220