Analytic Second Derivatives for the Efficient Electrostatic Embedding in the Fragment Molecular Orbital Method

被引:2
|
作者
Nakata, Hiroya [1 ]
Fedorov, Dmitri G. [2 ]
机构
[1] Res & Dev Ctr Kagoshima, Dept Fundamental Technol Res, 1-4 Kokubu Yamashita Cho, Kirishima, Kagoshima 8994312, Japan
[2] Natl Inst Adv Ind Sci & Technol, Res Ctr Computat Design Adv Funct Mat CD FMat, 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
关键词
fragment molecular orbital; vibration analysis; point charge approximation; FUNCTIONAL TIGHT-BINDING; DIVIDE-AND-CONQUER; DYNAMICS FMO-MD; HARTREE-FOCK; GEOMETRY OPTIMIZATIONS; DENSITY; ENERGY; PROTEIN; SYSTEMS; MODEL;
D O I
10.1002/jcc.25360
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The analytic second derivatives of the energy with respect to nuclear coordinates are developed for restricted Hartree-Fock and density functional theory, based on the two-body fragment molecular orbital method (FMO) and combined with the electrostatic embedding potential, self-consistently determined by point charges for far separated fragments and electron densities for near fragments. The accuracy of the method is established with respect to FMO using the exact embedding potential based on electron densities and to full calculations without fragmentation. The computational efficiency of parallelization is measured on the K supercomputer and the method is applied to simulate infrared spectra of two proteins, Trp-cage (PDB: 1L2Y) and crambin (1CRN). The nature of the vibrations in the Amide I peak of crambin and the Tyr symmetric stretch peak in Trp-cage are analyzed in terms of localized vibrations. (C) 2018 Wiley Periodicals, Inc.
引用
收藏
页码:2039 / 2050
页数:12
相关论文
共 50 条
  • [41] Calculations of large molecular systems with the fragment molecular orbital method
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239
  • [42] Molecular orbital of fragment molecular orbital method with Sakurai-Sugiura method on grid computing environment
    Nagashima, Umpei
    Watanabe, Toshio
    Inadomi, Yuichi
    Umeda, Hiroaki
    Ishimoto, Takayoshi
    Sakurai, Tetsuya
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233 : 21 - 21
  • [43] Evaluation of analytic molecular orbital derivatives and gradients using the effective valence shell Hamiltonian method
    Chaudhuri, RK
    Stevens, JE
    Freed, KF
    JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (22): : 9685 - 9693
  • [44] Efficient vibrational analysis for unrestricted Hartree-Fock based on the fragment molecular orbital method
    Nakata, Hiroya
    Fedorov, Dmitri G.
    Yokojima, Satoshi
    Kitaura, Kazuo
    Nakamura, Shinichiro
    CHEMICAL PHYSICS LETTERS, 2014, 603 : 67 - 74
  • [45] Fragmentation of disulfide bonds in the fragment molecular orbital method
    Fedorov, Dmitri G.
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2024, 1241
  • [46] The fragment molecular orbital method and understanding monomer polarization
    Churchill, Cassandra D. M.
    CHEMICAL PHYSICS LETTERS, 2012, 554 : 185 - 189
  • [47] Applications of the Fragment Molecular Orbital Method in Drug Discovery
    Ishikawa, Takeshi
    YAKUGAKU ZASSHI-JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, 2016, 136 (01): : 121 - 130
  • [48] Fully Integrated Effective Fragment Molecular Orbital Method
    Pruitt, Spencer R.
    Steinmann, Casper
    Jensen, Jan H.
    Gordon, Mark S.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (05) : 2235 - 2249
  • [49] Multilayer formulation of the fragment molecular orbital method (FMO)
    Fedorov, DG
    Ishida, T
    Kitaura, K
    JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (11): : 2638 - 2646
  • [50] Fragment molecular orbital method: analytical energy gradients
    Kitaura, K
    Sugiki, SI
    Nakano, T
    Komeiji, Y
    Uebayasi, M
    CHEMICAL PHYSICS LETTERS, 2001, 336 (1-2) : 163 - 170