Analytic Second Derivatives for the Efficient Electrostatic Embedding in the Fragment Molecular Orbital Method

被引:2
|
作者
Nakata, Hiroya [1 ]
Fedorov, Dmitri G. [2 ]
机构
[1] Res & Dev Ctr Kagoshima, Dept Fundamental Technol Res, 1-4 Kokubu Yamashita Cho, Kirishima, Kagoshima 8994312, Japan
[2] Natl Inst Adv Ind Sci & Technol, Res Ctr Computat Design Adv Funct Mat CD FMat, 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
关键词
fragment molecular orbital; vibration analysis; point charge approximation; FUNCTIONAL TIGHT-BINDING; DIVIDE-AND-CONQUER; DYNAMICS FMO-MD; HARTREE-FOCK; GEOMETRY OPTIMIZATIONS; DENSITY; ENERGY; PROTEIN; SYSTEMS; MODEL;
D O I
10.1002/jcc.25360
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The analytic second derivatives of the energy with respect to nuclear coordinates are developed for restricted Hartree-Fock and density functional theory, based on the two-body fragment molecular orbital method (FMO) and combined with the electrostatic embedding potential, self-consistently determined by point charges for far separated fragments and electron densities for near fragments. The accuracy of the method is established with respect to FMO using the exact embedding potential based on electron densities and to full calculations without fragmentation. The computational efficiency of parallelization is measured on the K supercomputer and the method is applied to simulate infrared spectra of two proteins, Trp-cage (PDB: 1L2Y) and crambin (1CRN). The nature of the vibrations in the Amide I peak of crambin and the Tyr symmetric stretch peak in Trp-cage are analyzed in terms of localized vibrations. (C) 2018 Wiley Periodicals, Inc.
引用
收藏
页码:2039 / 2050
页数:12
相关论文
共 50 条
  • [31] Definition of molecular orbitals in fragment molecular orbital method
    Inadomi, Y
    Nakano, T
    Kitaura, K
    Nagashima, U
    CHEMICAL PHYSICS LETTERS, 2002, 364 (1-2) : 139 - 143
  • [32] AN ANALYTIC METHOD FOR THE CALCULATION OF ELECTROSTATIC MOLECULAR POTENTIALS
    RAMOS, MJ
    WEBSTER, B
    JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS II, 1983, 79 : 1389 - 1398
  • [33] Polarization energies in the fragment molecular orbital method
    Fedorov, Dmitri G.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2022, 43 (16) : 1094 - 1103
  • [34] Exploring chemistry with the fragment molecular orbital method
    Fedorov, Dmitri G.
    Nagata, Takeshi
    Kitaura, Kazuo
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (21) : 7562 - 7577
  • [35] Acceleration of fragment molecular orbital method with GPUs
    Koga, Ryota
    Furukawa, Yuki
    Yasuda, Koji
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [36] Fragment molecular orbital method: application to polypeptides
    Nakano, T
    Kaminuma, T
    Sato, T
    Akiyama, Y
    Uebayasi, M
    Kitaura, K
    CHEMICAL PHYSICS LETTERS, 2000, 318 (06) : 614 - 618
  • [37] Recent development of the fragment molecular orbital method
    Kitaura, Kazuo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [38] Analytic Gradient for Time-Dependent Density Functional Theory Combined with the Fragment Molecular Orbital Method
    Nakata, Hiroya
    Fedorov, Dmitri G.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (04) : 1276 - 1285
  • [39] Efficient Molecular Dynamics Simulations of Multiple Radical Center Systems Based on the Fragment Molecular Orbital Method
    Nakata, Hiroya
    Schmidt, Michael W.
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    Nakamura, Shinichiro
    Gordon, Mark S.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2014, 118 (41): : 9762 - 9771
  • [40] Unrestricted Hartree-Fock based on the fragment molecular orbital method: Energy and its analytic gradient
    Nakata, Hiroya
    Fedorov, Dmitri G.
    Nagata, Takeshi
    Yokojima, Satoshi
    Ogata, Koji
    Kitaura, Kazuo
    Nakamura, Shinichiro
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (04): : 044110