Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry

被引:94
|
作者
Miller, Joseph D. [1 ]
Slipchenko, Mikhail N. [1 ,2 ]
Meyer, Terrence R. [1 ]
Stauffer, Hans U. [3 ]
Gord, James R. [3 ]
机构
[1] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
[2] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA
[3] USAF, Res Lab, Prop Directorate, Wright Patterson AFB, OH 45433 USA
关键词
D O I
10.1364/OL.35.002430
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate hybrid femtosecond/picosecond (fs/ps) coherent anti-Stokes Raman scattering for high-speed thermometry in unsteady high-temperature flames, including successful comparisons with a time-and frequency-resolved theoretical model. After excitation of the N(2) vibrational manifold with 100 fs broadband pump and Stokes beams, the Raman coherence is probed using a frequency-narrowed 2.5 ps probe beam that is time delayed to suppress the nonresonant background by 2 orders of magnitude. Experimental spectra were obtained at 500 Hz in steady and pulsed H(2)-air flames and exhibit a temperature precision of 2.2% and an accuracy of 3.3% up to 2400 K. Strategies for real-time gas-phase thermometry in high-temperature flames are also discussed, along with implications for kilohertz-rate measurements in practical combustion systems. (C) 2010 Optical Society of America
引用
收藏
页码:2430 / 2432
页数:3
相关论文
共 50 条
  • [11] Femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry in the exhaust of a rotating detonation combustor
    Athmanathan, Venkat
    Rahman, K. Arafat
    Lauriola, Daniel K.
    Braun, James
    Paniagua, Guillermo
    Slipchenko, Mikhail N.
    Roy, Sukesh
    Meyer, Terrence R.
    COMBUSTION AND FLAME, 2021, 231
  • [12] Analysis of picosecond coherent anti-Stokes Raman spectra for gas-phase diagnostics
    Kearney, Sean P.
    Lauriola, Daniel K.
    Stauffer, Hans U.
    Hsu, Paul
    Jiang, Naibo
    Athmanathan, Venkat
    Meyer, Terrence R.
    Roy, Sukesh
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2023, 40 (06) : 1611 - 1624
  • [13] Sensitive hybrid femtosecond/picosecond vibrational coherent anti-Stokes Raman scattering thermometry using optimized probe time delays
    Zhao, Huijie
    Tian, Ziyang
    Wu, Tao
    Li, Yan
    Wei, Haoyun
    APPLIED PHYSICS LETTERS, 2020, 116 (11)
  • [14] Pressure measurements using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering
    Kearney, Sean P.
    Danehy, Paul M.
    OPTICS LETTERS, 2015, 40 (17) : 4082 - 4085
  • [15] Fast spectral coherent anti-Stokes Raman scattering microscopy with high-speed tunable picosecond laser
    Cahyadi, Harsono
    Iwatsuka, Junichi
    Minamikawa, Takeo
    Niioka, Hirohiko
    Araki, Tsutomu
    Hashimoto, Mamoru
    JOURNAL OF BIOMEDICAL OPTICS, 2013, 18 (09)
  • [16] Research Progress of Femtosecond Coherent Anti-Stokes Raman Scattering Spectroscopy Thermometry
    Yun Sheng
    Zhang Yuan
    Zhang Sheng
    Zhang Zhi-Bin
    DENG Yan-Yan
    Tian Liang
    Liu Zhao-Hong
    Liu Shuo
    Zhang Yong
    Wang Yu-Lei
    Lu Zhi-We
    Xia Yuan-Qin
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44 (04) : 901 - 909
  • [17] Gas-phase thermometry using delayed-probe-pulse picosecond coherent anti-Stokes Raman scattering spectra of H2
    Stauffer, Hans U.
    Kulatilaka, Waruna D.
    Hsu, Paul S.
    Gord, James R.
    Roy, Sukesh
    APPLIED OPTICS, 2011, 50 (04) : A38 - A48
  • [18] An ideal nanocomposite for gas-phase sensing with coherent anti-Stokes Raman scattering
    Zheltikov, AM
    OPTICS COMMUNICATIONS, 2005, 244 (1-6) : 461 - 467
  • [19] Single-shot femtosecond coherent anti-Stokes Raman-scattering thermometry
    Lang, T
    Motzkus, M
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2002, 19 (02) : 340 - 344
  • [20] Post-detonation fireball thermometry via femtosecond-picosecond coherent anti-Stokes Raman Scattering (CARS)
    Richardson, Daniel R.
    Kearney, Sean P.
    Guildenbecher, Daniel R.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2021, 38 (01) : 1657 - 1664