Extreme value statistics for censored data with heavy tails under competing risks
被引:9
|
作者:
Worms, Julien
论文数: 0引用数: 0
h-index: 0
机构:
Univ Versailles St Quentin En Yvelines, Univ Paris Saclay, Lab Math Versailles, CNRS,UMR 8100, F-78035 Versailles, FranceUniv Versailles St Quentin En Yvelines, Univ Paris Saclay, Lab Math Versailles, CNRS,UMR 8100, F-78035 Versailles, France
Worms, Julien
[1
]
Worms, Rym
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, Lab Anal & Math Appl, CNRS, UMR8050,UPEMLV,UPEC, F-94010 Creteil, FranceUniv Versailles St Quentin En Yvelines, Univ Paris Saclay, Lab Math Versailles, CNRS,UMR 8100, F-78035 Versailles, France
Worms, Rym
[2
]
机构:
[1] Univ Versailles St Quentin En Yvelines, Univ Paris Saclay, Lab Math Versailles, CNRS,UMR 8100, F-78035 Versailles, France
[2] Univ Paris Est, Lab Anal & Math Appl, CNRS, UMR8050,UPEMLV,UPEC, F-94010 Creteil, France
Extreme value index;
Tail inference;
Random censoring;
Competing Risks;
Aalen-Johansen estimator;
NONPARAMETRIC QUANTILE INFERENCE;
CENTRAL-LIMIT-THEOREM;
DISTRIBUTIONS;
ESTIMATOR;
MODELS;
D O I:
10.1007/s00184-018-0662-3
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
This paper addresses the problem of estimating, from randomly censored data subject to competing risks, the extreme value index of the (sub)-distribution function associated to one particular cause, in a heavy-tail framework. Asymptotic normality of the proposed estimator is established. This estimator has the form of an Aalen-Johansen integral and is the first estimator proposed in this context. Estimation of extreme quantiles of the cumulative incidence function is then addressed as a consequence. A small simulation study exhibits the performances for finite samples.