Extreme value statistics for censored data with heavy tails under competing risks

被引:9
|
作者
Worms, Julien [1 ]
Worms, Rym [2 ]
机构
[1] Univ Versailles St Quentin En Yvelines, Univ Paris Saclay, Lab Math Versailles, CNRS,UMR 8100, F-78035 Versailles, France
[2] Univ Paris Est, Lab Anal & Math Appl, CNRS, UMR8050,UPEMLV,UPEC, F-94010 Creteil, France
关键词
Extreme value index; Tail inference; Random censoring; Competing Risks; Aalen-Johansen estimator; NONPARAMETRIC QUANTILE INFERENCE; CENTRAL-LIMIT-THEOREM; DISTRIBUTIONS; ESTIMATOR; MODELS;
D O I
10.1007/s00184-018-0662-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper addresses the problem of estimating, from randomly censored data subject to competing risks, the extreme value index of the (sub)-distribution function associated to one particular cause, in a heavy-tail framework. Asymptotic normality of the proposed estimator is established. This estimator has the form of an Aalen-Johansen integral and is the first estimator proposed in this context. Estimation of extreme quantiles of the cumulative incidence function is then addressed as a consequence. A small simulation study exhibits the performances for finite samples.
引用
收藏
页码:849 / 889
页数:41
相关论文
共 50 条