A new approach to regression analysis of censored competing-risks data

被引:0
|
作者
Jin, Yuxue [1 ]
Lai, Tze Leung [2 ]
机构
[1] Google, Quantitat Mkt, New York, NY 10011 USA
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Asymptotic efficiency; Cumulative incidence function; Empirical process theory; Hazard function of subdistribution; Martingale central limit theorem; Semiparametric likelihood; Volterra equation; MAXIMUM-LIKELIHOOD-ESTIMATION; SHARED FRAILTY MODEL; CUMULATIVE INCIDENCE; SURVIVAL ANALYSIS;
D O I
10.1007/s10985-016-9378-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An approximate likelihood approach is developed for regression analysis of censored competing-risks data. This approach models directly the cumulative incidence function, instead of the cause-specific hazard function, in terms of explanatory covariates under a proportional subdistribution hazards assumption. It uses a self-consistent iterative procedure to maximize an approximate semiparametric likelihood function, leading to an asymptotically normal and efficient estimator of the vector of regression parameters. Simulation studies demonstrate its advantages over previous methods.
引用
收藏
页码:605 / 625
页数:21
相关论文
共 50 条
  • [1] A new approach to regression analysis of censored competing-risks data
    Yuxue Jin
    Tze Leung Lai
    Lifetime Data Analysis, 2017, 23 : 605 - 625
  • [2] Semiparametric Regression Analysis of Interval-Censored Competing Risks Data
    Mao, Lu
    Lin, Dan-Yu
    Zeng, Donglin
    BIOMETRICS, 2017, 73 (03) : 857 - 865
  • [3] An EM-based semi-parametric mixture model approach to the regression analysis of competing-risks data
    Ng, SK
    McLachlan, GJ
    STATISTICS IN MEDICINE, 2003, 22 (07) : 1097 - 1111
  • [4] Nonparametric association analysis of bivariate competing-risks data
    Cheng, Yu
    Fine, Jason P.
    Kosorok, Michael R.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (480) : 1407 - 1415
  • [5] Analysis of hybrid censored competing risks data
    Bhattacharya, Shrijita
    Pradhan, Biswabrata
    Kundu, Debasis
    STATISTICS, 2014, 48 (05) : 1138 - 1154
  • [6] Quantile regression model for interval-censored data with competing risks
    Ramli, Amirah Afiqah Binti Che
    Kim, Yang-Jin
    JOURNAL OF APPLIED STATISTICS, 2025,
  • [7] Multiple imputation for competing risks regression with interval-censored data
    Delord, Marc
    Genin, Emmanuelle
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (11) : 2217 - 2228
  • [8] Bayesian analysis of progressively censored competing risks data
    Kundu, Debasis
    Pradhan, Biswabrata
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2011, 73 (02): : 276 - 296
  • [9] Bayesian analysis of progressively censored competing risks data
    Debasis Kundu
    Biswabrata Pradhan
    Sankhya B, 2011, 73 (2) : 276 - 296
  • [10] Childhood adversity and major depression in later life: A competing-risks regression analysis
    Xiang, Xiaoling
    Wang, Xiafei
    INTERNATIONAL JOURNAL OF GERIATRIC PSYCHIATRY, 2021, 36 (01) : 215 - 223