A new approach to regression analysis of censored competing-risks data

被引:0
|
作者
Jin, Yuxue [1 ]
Lai, Tze Leung [2 ]
机构
[1] Google, Quantitat Mkt, New York, NY 10011 USA
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Asymptotic efficiency; Cumulative incidence function; Empirical process theory; Hazard function of subdistribution; Martingale central limit theorem; Semiparametric likelihood; Volterra equation; MAXIMUM-LIKELIHOOD-ESTIMATION; SHARED FRAILTY MODEL; CUMULATIVE INCIDENCE; SURVIVAL ANALYSIS;
D O I
10.1007/s10985-016-9378-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An approximate likelihood approach is developed for regression analysis of censored competing-risks data. This approach models directly the cumulative incidence function, instead of the cause-specific hazard function, in terms of explanatory covariates under a proportional subdistribution hazards assumption. It uses a self-consistent iterative procedure to maximize an approximate semiparametric likelihood function, leading to an asymptotically normal and efficient estimator of the vector of regression parameters. Simulation studies demonstrate its advantages over previous methods.
引用
收藏
页码:605 / 625
页数:21
相关论文
共 50 条
  • [21] Statistical analysis of middle censored competing risks data with exponential distribution
    Ahmadi, K.
    Rezaei, M.
    Yousefzadeh, F.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (16) : 3082 - 3110
  • [22] Analysis of Type-II hybrid censored competing risks data
    Koley, Arnab
    Kundu, Debasis
    Ganguly, Ayon
    STATISTICS, 2017, 51 (06) : 1304 - 1325
  • [23] A regression analysis of discrete time competing risks data using a vertical model approach
    Ndlovu, Bonginkosi D.
    Melesse, Sileshi F.
    Zewotir, Temesgen
    SOUTH AFRICAN STATISTICAL JOURNAL, 2022, 56 (01) : 21 - 36
  • [24] Power-transformed linear regression on quantile residual life for censored competing risks data
    Fan, Caiyun
    Zhang, Feipeng
    Zhou, Yong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (20) : 5884 - 5905
  • [25] Geometry of exponential family with competing risks and censored data
    Zhang, Fode
    Shi, Yimin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 446 : 234 - 245
  • [26] On progressively censored competing risks data for Weibull distributions
    Pareek, Bhuvanesh
    Kundu, Debasis
    Kumar, Sumit
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (12) : 4083 - 4094
  • [27] Outcomes of mitral valve replacement in children: A competing-risks analysis
    Kojori, F
    Chen, R
    Caldarone, CA
    Merklinger, SL
    Azakie, A
    Williams, WG
    Van Arsdell, GS
    Coles, J
    McCrindle, BW
    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2004, 128 (05): : 703 - 709
  • [28] Competing risks regression for clustered data
    Zhou, Bingqing
    Fine, Jason
    Latouche, Aurelien
    Labopin, Myriam
    BIOSTATISTICS, 2012, 13 (03) : 371 - 383
  • [29] Competing Risks Regression for Stratified Data
    Zhou, Bingqing
    Latouche, Aurelien
    Rocha, Vanderson
    Fine, Jason
    BIOMETRICS, 2011, 67 (02) : 661 - 670
  • [30] Worker occupational skills and unemployment duration: a competing-risks econometric approach
    Elroukh, Ahmed Wassal
    INTERNATIONAL JOURNAL OF COMPUTATIONAL ECONOMICS AND ECONOMETRICS, 2024, 14 (03) : 306 - 336