Coexistence of doublon and dendrite structure with phase-field model

被引:1
|
作者
Tokunaga, S [1 ]
Sakaguchi, H [1 ]
机构
[1] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Kasuga, Fukuoka 8168580, Japan
关键词
D O I
10.1142/9789812702746_0025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Doublon is one of the typical patterns found in crystal growth. It is a pair of symmetry broken fingers. In this paper, we obtain numerically parameter range of coexistence of doublon and dendrite structure with a phase-field model. We perform numerical simulations in a two-dimensional channel, setting small seed of crystal at left-bottom side of the channel as an initial condition. The oscillation of groove of doublon appears in some parameter range even though without perturbation. In other parameter range, both dendrite and doublon make their appearance along same growth direction.
引用
收藏
页码:301 / 308
页数:8
相关论文
共 50 条
  • [41] Phase-Field Model of Electronic Antidoping
    Shi, Yin
    Zhao, Guo-Dong
    Dabo, Ismaila
    Ramanathan, Shriram
    Chen, Long-Qing
    PHYSICAL REVIEW LETTERS, 2024, 132 (25)
  • [42] Phase-field simulation of secondary dendrite growth in directional solidification of binary alloys
    Li Feng
    Ni-ni Lu
    Ya-long Gao
    Chang-sheng Zhu
    Jun-he Zhong
    Rong-zhen Xiao
    China Foundry, 2019, (02) : 97 - 104
  • [43] Three-dimensional phase-field simulation of free dendrite growth of iron
    Oguchi, Kanae
    Suzuki, Toshio
    ISIJ INTERNATIONAL, 2007, 47 (02) : 277 - 281
  • [44] The phase-field model in tumor growth
    Travasso, Rui D. M.
    Castro, Mario
    Oliveira, Joana C. R. E.
    PHILOSOPHICAL MAGAZINE, 2011, 91 (01) : 183 - 206
  • [45] Γ-limit of a phase-field model of dislocations
    Garroni, A
    Müller, S
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (06) : 1943 - 1964
  • [46] Phase-field model of oxidation: Kinetics
    Kim, Kyoungdoc
    Sherman, Quentin C.
    Aagesen, Larry K.
    Voorhees, Peter W.
    PHYSICAL REVIEW E, 2020, 101 (02)
  • [47] Fluctuations in the phase-field model of solidification
    Pavlik, SG
    Sekerka, RF
    PHYSICA A, 2000, 277 (3-4): : 415 - 431
  • [48] PHASE-FIELD MODEL OF EUTECTIC GROWTH
    KARMA, A
    PHYSICAL REVIEW E, 1994, 49 (03): : 2245 - 2250
  • [49] Electrical treeing: A phase-field model
    Cai, Ziming
    Wang, Xiaohui
    Li, Longtu
    Hong, Wei
    EXTREME MECHANICS LETTERS, 2019, 28 : 87 - 95
  • [50] Modelling of Secondary Dendrite Arms Evolution during Solidification by a Phase-field Method
    Zheng, Qi-Wei
    Jing, Tao
    Dong, Hong-biao
    MATERIALS TODAY-PROCEEDINGS, 2015, 2 : 466 - 473