Coexistence of doublon and dendrite structure with phase-field model

被引:1
|
作者
Tokunaga, S [1 ]
Sakaguchi, H [1 ]
机构
[1] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Kasuga, Fukuoka 8168580, Japan
关键词
D O I
10.1142/9789812702746_0025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Doublon is one of the typical patterns found in crystal growth. It is a pair of symmetry broken fingers. In this paper, we obtain numerically parameter range of coexistence of doublon and dendrite structure with a phase-field model. We perform numerical simulations in a two-dimensional channel, setting small seed of crystal at left-bottom side of the channel as an initial condition. The oscillation of groove of doublon appears in some parameter range even though without perturbation. In other parameter range, both dendrite and doublon make their appearance along same growth direction.
引用
收藏
页码:301 / 308
页数:8
相关论文
共 50 条
  • [31] A phase-field model of solidification with convection
    Anderson, DM
    McFadden, GB
    Wheeler, AA
    PHYSICA D-NONLINEAR PHENOMENA, 2000, 135 (1-2) : 175 - 194
  • [32] Phase-field model of dendritic growth
    Suzuki, T
    Ode, M
    Kim, SG
    Kim, WT
    JOURNAL OF CRYSTAL GROWTH, 2002, 237 : 125 - 131
  • [33] A phase-field model for spall fracture
    Zhang, Hao
    Peng, Hui
    Pei, Xiao-yang
    Li, Ping
    Tang, Tie-gang
    Cai, Ling-cang
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (12)
  • [34] On a phase-field model with a logarithmic nonlinearity
    Miranville, Alain
    APPLICATIONS OF MATHEMATICS, 2012, 57 (03) : 215 - 229
  • [35] A phase-field model for cohesive fracture
    Verhoosel, Clemens V.
    de Borst, Rene
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 96 (01) : 43 - 62
  • [36] Phase-field model of crystal grains
    Lobkovsky, AE
    Warren, JA
    JOURNAL OF CRYSTAL GROWTH, 2001, 225 (2-4) : 282 - 288
  • [37] A phase-field model for deformation twinning
    Heo, Tae Wook
    Wang, Yi
    Bhattacharya, Saswata
    Sun, Xin
    Hu, Shenyang
    Chen, Long-Qing
    PHILOSOPHICAL MAGAZINE LETTERS, 2011, 91 (02) : 110 - 121
  • [38] Phase-field crystal model for heterostructures
    Hirvonen, Petri
    Heinonen, Vili
    Dong, Haikuan
    Fan, Zheyong
    Elder, Ken R.
    Ala-Nissila, Tapio
    PHYSICAL REVIEW B, 2019, 100 (16)
  • [39] Phase-field model for binary alloys
    Kim, SG
    Kim, WT
    Suzuki, T
    PHYSICAL REVIEW E, 1999, 60 (06): : 7186 - 7197
  • [40] On a phase-field model with a logarithmic nonlinearity
    Alain Miranville
    Applications of Mathematics, 2012, 57 : 215 - 229