CyTOFmerge: integrating mass cytometry data across multiple panels

被引:17
|
作者
Abdelaal, Tamim [1 ,2 ]
Hollt, Thomas [2 ,3 ]
van Unen, Vincent [4 ]
Lelieveldt, Boudewijn P. F. [1 ,2 ,5 ]
Koning, Frits [4 ]
Reinders, Marcel J. T. [1 ,2 ]
Mahfouz, Ahmed [1 ,2 ]
机构
[1] Delft Univ Technol, Delft Bioinformat Lab, NL-2628 XE Delft, Netherlands
[2] Leiden Univ, Med Ctr, Leiden Computat Biol Ctr, NL-2333 ZC Leiden, Netherlands
[3] Delft Univ Technol, Comp Graph & Visualizat Grp, NL-2628 XE Delft, Netherlands
[4] Leiden Univ, Med Ctr, Dept Immunohematol & Blood Transfus, NL-2333 ZA Leiden, Netherlands
[5] Leiden Univ, Med Ctr, Dept Radiol, NL-2333 ZA Leiden, Netherlands
基金
欧盟地平线“2020”;
关键词
IMMUNE; ATLAS; SPACE; CELLS;
D O I
10.1093/bioinformatics/btz180
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: High-dimensional mass cytometry (CyTOF) allows the simultaneous measurement of multiple cellular markers at single-cell level, providing a comprehensive view of cell compositions. However, the power of CyTOF to explore the full heterogeneity of a biological sample at the single-cell level is currently limited by the number of markers measured simultaneously on a single panel. Results: To extend the number of markers per cell, we propose an in silico method to integrate CyTOF datasets measured using multiple panels that share a set of markers. Additionally, we present an approach to select the most informative markers from an existing CyTOF dataset to be used as a shared marker set between panels. We demonstrate the feasibility of our methods by evaluating the quality of clustering and neighborhood preservation of the integrated dataset, on two public CyTOF datasets. We illustrate that by computationally extending the number of markers we can further untangle the heterogeneity of mass cytometry data, including rare cell-population detection.
引用
收藏
页码:4063 / 4071
页数:9
相关论文
共 50 条
  • [42] High-Dimensional Data Analysis Algorithms Yield Comparable Results for Mass Cytometry and Spectral Flow Cytometry Data
    Ferrer-Font, Laura
    Mayer, Johannes U.
    Old, Samuel
    Hermans, Ian F.
    Irish, Jonathan
    Price, Kylie M.
    CYTOMETRY PART A, 2020, 97 (08) : 824 - 831
  • [43] Integrating assessment data from multiple informants
    Offord, DR
    Boyle, MH
    Racine, Y
    Szatmari, P
    Fleming, JE
    Sanford, M
    Lipman, EL
    JOURNAL OF THE AMERICAN ACADEMY OF CHILD AND ADOLESCENT PSYCHIATRY, 1996, 35 (08): : 1078 - 1085
  • [44] Integrating Multiple Data Sources for Stock Prediction
    Wu, Di
    Fung, Gabriel Pui Cheong
    Yu, Jeffrey Xu
    Liu, Zheng
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2008, PROCEEDINGS, 2008, 5175 : 77 - +
  • [45] INTEGRATING MULTIPLE BUILT ENVIRONMENT DATA SOURCES
    Won, Jung Yeon
    Elliott, Michael R.
    Sanchez-Vaznaugh, Emma V.
    Sanchez, Brisa N.
    ANNALS OF APPLIED STATISTICS, 2023, 17 (02): : 1722 - 1739
  • [46] ASSESSING THE REPRESENTATIVENESS OF BODY MASS INDEX CATEGORIES ACROSS MULTIPLE TYPES OF SECONDARY DATA SOURCES
    Boulanger, L.
    VALUE IN HEALTH, 2023, 26 (12) : S511 - S512
  • [47] CellCycleTRACER accounts for cell cycle and volume in mass cytometry data
    Maria Anna Rapsomaniki
    Xiao-Kang Lun
    Stefan Woerner
    Marco Laumanns
    Bernd Bodenmiller
    María Rodríguez Martínez
    Nature Communications, 9
  • [48] Challenges in the Multivariate Analysis of Mass Cytometry Data: The Effect of Randomization
    Papoutsoglou, Georgios
    Lagani, Vincenzo
    Schmidt, Angelika
    Tsirlis, Konstantinos
    Cabrero, David-Gomez
    Tegner, Jesper
    Tsamardinos, Ioannis
    CYTOMETRY PART A, 2019, 95 (11) : 1178 - 1190
  • [49] A comparison framework and guideline of clustering methods for mass cytometry data
    Liu, Xiao
    Song, Weichen
    Wong, Brandon Y.
    Zhang, Ting
    Yu, Shunying
    Lin, Guan Ning
    Ding, Xianting
    GENOME BIOLOGY, 2019, 20 (01)
  • [50] Predicting Cell Populations in Single Cell Mass Cytometry Data
    Abdelaal, Tamim
    van Unen, Vincent
    Hollt, Thomas
    Koning, Frits
    Reinders, Marcel J. T.
    Mahfouz, Ahmed
    CYTOMETRY PART A, 2019, 95A (07) : 769 - 781