CyTOFmerge: integrating mass cytometry data across multiple panels

被引:17
|
作者
Abdelaal, Tamim [1 ,2 ]
Hollt, Thomas [2 ,3 ]
van Unen, Vincent [4 ]
Lelieveldt, Boudewijn P. F. [1 ,2 ,5 ]
Koning, Frits [4 ]
Reinders, Marcel J. T. [1 ,2 ]
Mahfouz, Ahmed [1 ,2 ]
机构
[1] Delft Univ Technol, Delft Bioinformat Lab, NL-2628 XE Delft, Netherlands
[2] Leiden Univ, Med Ctr, Leiden Computat Biol Ctr, NL-2333 ZC Leiden, Netherlands
[3] Delft Univ Technol, Comp Graph & Visualizat Grp, NL-2628 XE Delft, Netherlands
[4] Leiden Univ, Med Ctr, Dept Immunohematol & Blood Transfus, NL-2333 ZA Leiden, Netherlands
[5] Leiden Univ, Med Ctr, Dept Radiol, NL-2333 ZA Leiden, Netherlands
基金
欧盟地平线“2020”;
关键词
IMMUNE; ATLAS; SPACE; CELLS;
D O I
10.1093/bioinformatics/btz180
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: High-dimensional mass cytometry (CyTOF) allows the simultaneous measurement of multiple cellular markers at single-cell level, providing a comprehensive view of cell compositions. However, the power of CyTOF to explore the full heterogeneity of a biological sample at the single-cell level is currently limited by the number of markers measured simultaneously on a single panel. Results: To extend the number of markers per cell, we propose an in silico method to integrate CyTOF datasets measured using multiple panels that share a set of markers. Additionally, we present an approach to select the most informative markers from an existing CyTOF dataset to be used as a shared marker set between panels. We demonstrate the feasibility of our methods by evaluating the quality of clustering and neighborhood preservation of the integrated dataset, on two public CyTOF datasets. We illustrate that by computationally extending the number of markers we can further untangle the heterogeneity of mass cytometry data, including rare cell-population detection.
引用
收藏
页码:4063 / 4071
页数:9
相关论文
共 50 条
  • [31] Experimental-neuromodeling framework for understanding auditory object processing: Integrating data across multiple scales
    Husain, Fatima T.
    Horwitz, Barry
    JOURNAL OF PHYSIOLOGY-PARIS, 2006, 100 (1-3) : 133 - 141
  • [32] GdClean: removal of Gadolinium contamination in mass cytometry data
    Liu, Junwei
    Liu, Lulu
    Qu, Saisi
    Zhang, Tongtong
    Wang, Danyang
    Ji, Qinghua
    Wang, Tian
    Shi, Hongyu
    Song, Kaichen
    Fang, Weijia
    Chen, Wei
    Yin, Weiwei
    BIOINFORMATICS, 2021, 37 (24) : 4787 - 4792
  • [33] The EPIC data analytics platform for clinical mass cytometry
    Wasser, Martin
    Yeo, Joo Guan
    Kumar, Pavanish
    Chew, Valerie
    Lim, Chun Jye
    Arkachaisri, Thaschawee
    Poh, Su Li
    Leong, Jing Yao
    Yeo, Kee Thai
    Albani, Salvatore
    JOURNAL OF IMMUNOLOGY, 2020, 204 (01):
  • [34] Agile workflow for interactive analysis of mass cytometry data
    Casado, Julia
    Lehtonen, Oskari
    Rantanen, Ville
    Kaipio, Katja
    Pasquini, Luca
    Hakkinen, Antti
    Petrucci, Elenora
    Hynninen, Johanna
    Hietanen, Sakari
    Carpen, Olli
    Biffoni, Mauro
    Farkkila, Anniina
    Hautaniemi, Sampsa
    BIOINFORMATICS, 2021, 37 (09) : 1263 - 1268
  • [35] RUCova: Removal of Unwanted Covariance in mass cytometry data
    Astaburuaga-Garcia, Rosario
    Sell, Thomas
    Mutlu, Samet
    Sieber, Anja
    Lauber, Kirsten
    Bluethgen, Nils
    BIOINFORMATICS, 2024, 40 (11)
  • [36] Confident identification of 3-nitrotyrosine modifications in mass spectral data across multiple mass spectrometry platforms
    Li, Bensheng
    Held, Jason M.
    Schilling, Birgit
    Danielson, Steven R.
    Gibson, Bradford W.
    JOURNAL OF PROTEOMICS, 2011, 74 (11) : 2510 - 2521
  • [37] Mass Cytometry as a Tool for Investigating Senescence in Multiple Model Systems
    Abdul-Aziz, Amina
    Devine, Raymond D.
    Lyberger, Justin M.
    Chang, Hsiaochi
    Kovacs, Amy
    Lerma, James R.
    Rogers, Andrew M.
    Byrd, John C.
    Hertlein, Erin
    Behbehani, Gregory K.
    CELLS, 2023, 12 (16)
  • [38] Multiplexed imaging of the multiple sclerosis meninges using mass cytometry
    Ramaglia, V.
    Zuo, M.
    Fransen, N.
    Zandee, S.
    Prat, A.
    Huitinga, I.
    Bar-Or, A.
    Gommerman, J. L.
    MULTIPLE SCLEROSIS JOURNAL, 2021, 27 (2_SUPPL) : 335 - 335
  • [39] Characterization of the Immune Impact of Daratumumab By Mass Cytometry in Multiple Myeloma
    Johnson, Sarah K.
    Burke, Stephen
    Henry, Matthew
    Greenway, Amy
    Stone, Katie
    Walker, Brian A.
    van Rhee, Frits
    Morgan, Gareth
    BLOOD, 2018, 132
  • [40] Constraining reservoir models by integrating data across disciplines
    Shell Technology Centre Bangalore, India
    1600, Society of Petroleum Engineers (SPE) (67):