CyTOFmerge: integrating mass cytometry data across multiple panels

被引:17
|
作者
Abdelaal, Tamim [1 ,2 ]
Hollt, Thomas [2 ,3 ]
van Unen, Vincent [4 ]
Lelieveldt, Boudewijn P. F. [1 ,2 ,5 ]
Koning, Frits [4 ]
Reinders, Marcel J. T. [1 ,2 ]
Mahfouz, Ahmed [1 ,2 ]
机构
[1] Delft Univ Technol, Delft Bioinformat Lab, NL-2628 XE Delft, Netherlands
[2] Leiden Univ, Med Ctr, Leiden Computat Biol Ctr, NL-2333 ZC Leiden, Netherlands
[3] Delft Univ Technol, Comp Graph & Visualizat Grp, NL-2628 XE Delft, Netherlands
[4] Leiden Univ, Med Ctr, Dept Immunohematol & Blood Transfus, NL-2333 ZA Leiden, Netherlands
[5] Leiden Univ, Med Ctr, Dept Radiol, NL-2333 ZA Leiden, Netherlands
基金
欧盟地平线“2020”;
关键词
IMMUNE; ATLAS; SPACE; CELLS;
D O I
10.1093/bioinformatics/btz180
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: High-dimensional mass cytometry (CyTOF) allows the simultaneous measurement of multiple cellular markers at single-cell level, providing a comprehensive view of cell compositions. However, the power of CyTOF to explore the full heterogeneity of a biological sample at the single-cell level is currently limited by the number of markers measured simultaneously on a single panel. Results: To extend the number of markers per cell, we propose an in silico method to integrate CyTOF datasets measured using multiple panels that share a set of markers. Additionally, we present an approach to select the most informative markers from an existing CyTOF dataset to be used as a shared marker set between panels. We demonstrate the feasibility of our methods by evaluating the quality of clustering and neighborhood preservation of the integrated dataset, on two public CyTOF datasets. We illustrate that by computationally extending the number of markers we can further untangle the heterogeneity of mass cytometry data, including rare cell-population detection.
引用
收藏
页码:4063 / 4071
页数:9
相关论文
共 50 条
  • [1] Combining Mass Cytometry Data by CyTOFmerge Reveals Additional Cell Phenotypes in the Heterogeneous Ovarian Cancer Tumor Microenvironment: A Pilot Study
    Thomsen, Liv Cecilie Vestrheim
    Kleinmanns, Katrin
    Anandan, Shamundeeswari
    Gullaksen, Stein-Erik
    Abdelaal, Tamim
    Iversen, Grete Alrek
    Akslen, Lars Andreas
    Mccormack, Emmet
    Bjorge, Line
    CANCERS, 2023, 15 (20)
  • [2] Titrating Complex Mass Cytometry Panels
    Gullaksen, Stein-Erik
    Bader, Lucius
    Hellesoy, Monica
    Sulen, Andre
    Fagerholt, Oda Helen Eck
    Engen, Caroline B.
    Skavland, Jorn
    Gjertsen, Bjorn Tore
    Gavasso, Sonia
    CYTOMETRY PART A, 2019, 95A (07) : 792 - 796
  • [3] A novel data fusion method for the effective analysis of multiple panels of flow cytometry data
    Gerjen H. Tinnevelt
    Selma van Staveren
    Kristiaan Wouters
    Erwin Wijnands
    Kenneth Verboven
    Rita Folcarelli
    Leo Koenderman
    Lutgarde M. C. Buydens
    Jeroen J. Jansen
    Scientific Reports, 9
  • [4] A novel data fusion method for the effective analysis of multiple panels of flow cytometry data
    Tinnevelt, Gerjen H.
    van Staveren, Selma
    Wouters, Kristiaan
    Wijnands, Erwin
    Verboven, Kenneth
    Folcarelli, Rita
    Koenderman, Leo
    Buydens, Lutgarde M. C.
    Jansen, Jeroen J.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [5] Integrating Clinical and Multiple Omics Data for Prognostic Assessment across Human Cancers
    Bin Zhu
    Nan Song
    Ronglai Shen
    Arshi Arora
    Mitchell J. Machiela
    Lei Song
    Maria Teresa Landi
    Debashis Ghosh
    Nilanjan Chatterjee
    Veera Baladandayuthapani
    Hongyu Zhao
    Scientific Reports, 7
  • [6] Integrating Clinical and Multiple Omics Data for Prognostic Assessment across Human Cancers
    Zhu, Bin
    Song, Nan
    Shen, Ronglai
    Arora, Arshi
    Machiela, Mitchell J.
    Song, Lei
    Landi, Maria Teresa
    Ghosh, Debashis
    Chatterjee, Nilanjan
    Baladandayuthapani, Veera
    Zhao, Hongyu
    SCIENTIFIC REPORTS, 2017, 7
  • [7] Automated Data Cleanup for Mass Cytometry
    Bagwell, Charles Bruce
    Inokuma, Margaret
    Hunsberger, Benjamin
    Herbert, Donald
    Bray, Christopher
    Hill, Beth
    Stelzer, Gregory
    Li, Stephen
    Kollipara, Avinash
    Ornatsky, Olga
    Baranov, Vladimir
    CYTOMETRY PART A, 2020, 97 (02) : 184 - 198
  • [8] Integrating data across digital activities
    DiCerbo, Kristen
    LEARNING MEDIA AND TECHNOLOGY, 2016, 41 (02) : 233 - 251
  • [9] Integrating phenotype ontologies across multiple species
    Mungall, Christopher J.
    Gkoutos, Georgios V.
    Smith, Cynthia L.
    Haendel, Melissa A.
    Lewis, Suzanna E.
    Ashburner, Michael
    GENOME BIOLOGY, 2010, 11 (01):
  • [10] Integrating phenotype ontologies across multiple species
    Christopher J Mungall
    Georgios V Gkoutos
    Cynthia L Smith
    Melissa A Haendel
    Suzanna E Lewis
    Michael Ashburner
    Genome Biology, 11