Stability analysis of high-order Hopfield type neural networks with uncertainty

被引:11
|
作者
Xu, Bingji [1 ]
Wang, Qun [1 ]
Liao, Xiaoxin [2 ]
机构
[1] China Univ Geosci, Sch Informat Engn, Beijing 10083, Peoples R China
[2] Huazhong Univ Sci & Technol, Dept Control Sci & Engn, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
asymptotically stable; parametrically asymptotically stable; uncertainty; high-order Hopfield type neural networks;
D O I
10.1016/j.neucom.2007.03.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper. the stability of high-order Hopfield type neural networks with uncertainty is analyzed, the parametric uncertainty is assumed to be bounded. The equilibrium point position may exist for any particular unknown parameter vector in the parameter space, every time one or more of the uncertainty parameters is changed, the equilibrium may shift to a new position or altogether disappear. In the framework of parametric stability, some sufficient conditions are established to guarantee the existence of a globally asymptotically stable equilibrium point for all admissible parametric uncertainties, and the region about the equilibrium point of the nominal part of the neural network that contains the equilibria for each parameter vector in the given subset of the parameter space be estimated. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:508 / 512
页数:5
相关论文
共 50 条
  • [41] Stability analysis of Hopfield-type neural networks
    Juang, JC
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (06): : 1366 - 1374
  • [42] Anti-periodic solutions for high-order Hopfield neural networks
    Ou, Chunxia
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (07) : 1838 - 1844
  • [43] Global Exponential Robust Stability of Stochastic High-Order Hopfield Neural Networks with S-type Distributed Time Delays
    Liang, Xiao
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 5118 - 5124
  • [44] Global asymptotic stability of high-order delay Hopfield neural networks with time-varying coefficients
    Wang, PG
    Lian, HR
    Wu, YH
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2005, 24 (02): : 419 - 429
  • [45] Stability analysis for high-order dynamic neural networks with time delays
    Shen, WM
    Gu, J
    Shen, YJ
    IEEE ROBIO 2004: PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS, 2004, : 966 - 971
  • [46] Impulsive stabilization of high-order Hopfield-type neural networks with time-varying delays
    Liu, Xinzhi
    Wang, Qing
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2008, 19 (01): : 71 - 79
  • [47] The dynamics of octonion-valued neutral type high-order Hopfield neural networks with D operator
    Li, Bing
    Cao, Yuwei
    Li, Yongkun
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (06) : 9599 - 9613
  • [48] HIGH-ORDER HOPFIELD AND TANK OPTIMIZATION NETWORKS
    SAMAD, T
    HARPER, P
    PARALLEL COMPUTING, 1990, 16 (2-3) : 287 - 292
  • [49] Anti-periodic solutions for high-order Hopfield neural networks with impulses
    Wang, Qi
    Fang, Yayun
    Li, Hui
    Su, Lijuan
    Dai, Binxiang
    NEUROCOMPUTING, 2014, 138 : 339 - 346
  • [50] Delay-dependent stability criteria for high-order Hopfield-Type neural networks with time-varying delays and impulse
    Ji Yan
    Liu Ximei
    Hao Shengwu
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 790 - 795