Stability analysis of high-order Hopfield type neural networks with uncertainty

被引:11
|
作者
Xu, Bingji [1 ]
Wang, Qun [1 ]
Liao, Xiaoxin [2 ]
机构
[1] China Univ Geosci, Sch Informat Engn, Beijing 10083, Peoples R China
[2] Huazhong Univ Sci & Technol, Dept Control Sci & Engn, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
asymptotically stable; parametrically asymptotically stable; uncertainty; high-order Hopfield type neural networks;
D O I
10.1016/j.neucom.2007.03.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper. the stability of high-order Hopfield type neural networks with uncertainty is analyzed, the parametric uncertainty is assumed to be bounded. The equilibrium point position may exist for any particular unknown parameter vector in the parameter space, every time one or more of the uncertainty parameters is changed, the equilibrium may shift to a new position or altogether disappear. In the framework of parametric stability, some sufficient conditions are established to guarantee the existence of a globally asymptotically stable equilibrium point for all admissible parametric uncertainties, and the region about the equilibrium point of the nominal part of the neural network that contains the equilibria for each parameter vector in the given subset of the parameter space be estimated. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:508 / 512
页数:5
相关论文
共 50 条