Statistical Considerations for Analysis of Microarray Experiments

被引:20
|
作者
Owzar, Kouros [1 ]
Barry, William T. [1 ]
Jung, Sin-Ho [1 ]
机构
[1] Duke Univ, Duke Univ CALGB Stat Ctr, Dept Biostat & Bioinformat, Durham, NC 27710 USA
来源
关键词
microarrays; preprocessing; statistical inference; multiple testing; unsupervised learning; supervised learning; overfitting; validation; pathways; clinical trials; power; software; FALSE DISCOVERY RATE; GENE-EXPRESSION; FUNCTIONAL CATEGORIES; NORMALIZATION METHODS; SAMPLE-SIZE; CLASSIFICATION; CARCINOMAS;
D O I
10.1111/j.1752-8062.2011.00309.x
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Microarray technologies enable the simultaneous interrogation of expressions from thousands of genes from a biospecimen sample taken from a patient. This large set of expressions generates a genetic profile of the patient that may be used to identify potential prognostic or predictive genes or genetic models for clinical outcomes. The aim of this article is to provide a broad overview of some of the major statistical considerations for the design and analysis of microarrays experiments conducted as correlative science studies to clinical trials. An emphasis will be placed on how the lack of understanding and improper use of statistical concepts and methods will lead to noise discovery and misinterpretation of experimental results. Clin Trans Sci 2011; Volume 4: 466477
引用
收藏
页码:466 / 477
页数:12
相关论文
共 50 条
  • [31] Some statistical aspects of microarray analysis
    Hearne, Leonard B.
    ITI 2006: Proceedings of the 28th International Conference on Information Technology Interfaces, 2006, : 195 - 199
  • [32] Quantitatively evaluating restoration experiments: Research design, statistical analysis, and data management considerations
    Michener, WK
    RESTORATION ECOLOGY, 1997, 5 (04) : 324 - 337
  • [33] Interpreting experiments on egg production-Statistical considerations
    Billard, L.
    Song, E.
    Shim, M. Y.
    Pesti, G. M.
    POULTRY SCIENCE, 2013, 92 (09) : 2509 - 2518
  • [34] Exploratory Visual Analysis of Statistical Results from Microarray Experiments Comparing High and Low Grade Glioma
    Reif, David
    Israel, Mark
    Moore, Jason
    CANCER INFORMATICS, 2007, 5 : 19 - 24
  • [35] Assessing Statistical Significance in Microarray Experiments Using the Distance Between Microarrays
    Hayden, Douglas
    Lazar, Peter
    Schoenfeld, David
    PLOS ONE, 2009, 4 (06):
  • [36] GeneTrailExpress: a web-based pipeline for the statistical evaluation of microarray experiments
    Andreas Keller
    Christina Backes
    Maher Al-Awadhi
    Andreas Gerasch
    Jan Küntzer
    Oliver Kohlbacher
    Michael Kaufmann
    Hans-Peter Lenhof
    BMC Bioinformatics, 9
  • [37] GeneTrailExpress: a web-based pipeline for the statistical evaluation of microarray experiments
    Keller, Andreas
    Backes, Christina
    Al-Awadhi, Maher
    Gerasch, Andreas
    Kuentzer, Jan
    Kohlbacher, Oliver
    Kaufmann, Michael
    Lenhof, Hans-Peter
    BMC BIOINFORMATICS, 2008, 9 (1)
  • [38] Statistical tests for identification of differentially expressed genes in cDNA microarray experiments
    Sreekumar, J.
    Jose, K. K.
    INDIAN JOURNAL OF BIOTECHNOLOGY, 2008, 7 (04): : 423 - 436
  • [39] Gene Filtering in the Analysis of Illumina Microarray Experiments
    Forcheh, Anyiawung Chiara
    Verbeke, Geert
    Kasim, Adetayo
    Lin, Dan
    Shkedy, Ziv
    Talloen, Willem
    Goehlmann, Hinrich W. H.
    Clement, Lieven
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2012, 11 (02)
  • [40] Analysis of microarray experiments of gene expression profiling
    Tarca, Adi L.
    Romero, Roberto
    Draghici, Sorin
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2006, 195 (02) : 373 - 388