Statistical Considerations for Analysis of Microarray Experiments

被引:20
|
作者
Owzar, Kouros [1 ]
Barry, William T. [1 ]
Jung, Sin-Ho [1 ]
机构
[1] Duke Univ, Duke Univ CALGB Stat Ctr, Dept Biostat & Bioinformat, Durham, NC 27710 USA
来源
关键词
microarrays; preprocessing; statistical inference; multiple testing; unsupervised learning; supervised learning; overfitting; validation; pathways; clinical trials; power; software; FALSE DISCOVERY RATE; GENE-EXPRESSION; FUNCTIONAL CATEGORIES; NORMALIZATION METHODS; SAMPLE-SIZE; CLASSIFICATION; CARCINOMAS;
D O I
10.1111/j.1752-8062.2011.00309.x
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Microarray technologies enable the simultaneous interrogation of expressions from thousands of genes from a biospecimen sample taken from a patient. This large set of expressions generates a genetic profile of the patient that may be used to identify potential prognostic or predictive genes or genetic models for clinical outcomes. The aim of this article is to provide a broad overview of some of the major statistical considerations for the design and analysis of microarrays experiments conducted as correlative science studies to clinical trials. An emphasis will be placed on how the lack of understanding and improper use of statistical concepts and methods will lead to noise discovery and misinterpretation of experimental results. Clin Trans Sci 2011; Volume 4: 466477
引用
收藏
页码:466 / 477
页数:12
相关论文
共 50 条
  • [21] Statistical designs for two-color spotted microarray experiments
    Chai, Feng-Shun
    Liao, Chen-Tuo
    Tsai, Shin-Fu
    BIOMETRICAL JOURNAL, 2007, 49 (02) : 259 - 271
  • [22] The needed replicates of arrays in microarray experiments for reliable statistical evaluation
    Wang, SJ
    Chen, JJ
    METHODS OF MICROARRAY DATA ANALYSIS IV, 2005, : 35 - 50
  • [23] How to understand a complex reality: statistical issues in microarray experiments
    Mansmann, U
    PHARMACOGENOMICS, 2004, 5 (01) : 9 - 13
  • [24] Spatial analysis of cDNA microarray experiments
    Burgueño, J
    Crossa, J
    Grimanelli, D
    Leblanc, O
    Autran, D
    CROP SCIENCE, 2005, 45 (02) : 748 - 757
  • [25] Weighted analysis of paired microarray experiments
    Kristiansson, Erik
    Sjogren, Anders
    Rudemo, Mats
    Nerman, Olle
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2005, 4
  • [26] Weighted analysis of general microarray experiments
    Anders Sjögren
    Erik Kristiansson
    Mats Rudemo
    Olle Nerman
    BMC Bioinformatics, 8
  • [27] Weighted analysis of general microarray experiments
    Sjogren, Anders
    Kristiansson, Erik
    Rudemo, Mats
    Nerman, Olle
    BMC BIOINFORMATICS, 2007, 8 (1)
  • [28] Wavelet transforms for the analysis of microarray experiments
    Tokuyasu, TA
    Albertson, D
    Pinkel, D
    Jain, A
    PROCEEDINGS OF THE 2003 IEEE BIOINFORMATICS CONFERENCE, 2003, : 429 - 430
  • [29] Nonparametric analysis of replicated microarray experiments
    Gannoun, A
    Saracco, J
    Urfer, W
    Bonney, GE
    STATISTICAL MODELLING, 2004, 4 (03) : 195 - 209
  • [30] Statistical analysis of oligonucleotide microarray data
    Taib, Z
    COMPTES RENDUS BIOLOGIES, 2004, 327 (03) : 175 - 180