Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications

被引:101
|
作者
Gopinathan, Janarthanan [1 ,2 ]
Noh, Insup [1 ,2 ]
机构
[1] Seoul Natl Univ Sci & Technol, Seoul Tech, Dept Chem & Biomol Engn, 232 Gongneung Ro, Seoul 01811, South Korea
[2] Seoul Natl Univ Sci & Technol, Seoul Tech, Convergence Inst Biomed Engn & Biomat, 232 Gongneung Ro, Seoul 01811, South Korea
基金
新加坡国家研究基金会;
关键词
Click chemistry; Hydrogels; 3D bioprinting; Tissue engineering; Regenerative medicine; AZIDE-ALKYNE CYCLOADDITION; HYALURONIC-ACID HYDROGELS; MICHAEL ADDITION-REACTIONS; SELF-HEALING HYDROGEL; CROSS-LINKING; COPPER-FREE; POLY(ETHYLENE GLYCOL); PEG HYDROGELS; DELIVERY; DIFFERENTIATION;
D O I
10.1007/s13770-018-0152-8
中图分类号
Q813 [细胞工程];
学科分类号
摘要
BACKGROUND: The tissue engineering and regenerative medicine approach require biomaterials which are biocompatible, easily reproducible in less time, biodegradable and should be able to generate complex three-dimensional (3D) structures to mimic the native tissue structures. Click chemistry offers the much-needed multifunctional hydrogel materials which are interesting biomaterials for the tissue engineering and bioprinting inks applications owing to their excellent ability to form hydrogels with printability instantly and to retain the live cells in their 3D network without losing the mechanical integrity even under swollen state. METHODS: In this review, we present the recent developments of in situ hydrogel in the field of click chemistry reported for the tissue engineering and 3D bioinks applications, by mainly covering the diverse types of click chemistry methods such as Diels-Alder reaction, strain-promoted azide-alkyne cycloaddition reactions, thiol-ene reactions, oxime reactions and other interrelated reactions, excluding enzyme-based reactions. RESULTS: The click chemistry-based hydrogels are formed spontaneously on mixing of reactive compounds and can encapsulate live cells with high viability for a long time. The recent works reported by combining the advantages of click chemistry and 3D bioprinting technology have shown to produce 3D tissue constructs with high resolution using biocompatible hydrogels as bioinks and in situ injectable forms. CONCLUSION: Interestingly, the emergence of click chemistry reactions in bioink synthesis for 3D bioprinting have shown the massive potential of these reaction methods in creating 3D tissue constructs. However, the limitations and challenges involved in the click chemistry reactions should be analyzed and bettered to be applied to tissue engineering and 3D bioinks. The future scope of these materials is promising, including their applications in in situ 3D bioprinting for tissue or organ regeneration.
引用
收藏
页码:531 / 546
页数:16
相关论文
共 50 条
  • [41] Click Chemistry-Based Nanomaterial Modification for Cancer Targeting: A Review
    Shi, Jiaming
    Fu, Wenjun
    Zou, Qing
    Ward, Natalie
    Liao, Saihu
    Wang, Jiao
    Deng, Xiaoyong
    Zhao, Robert Chunhua
    ACS APPLIED NANO MATERIALS, 2025, 8 (01) : 10 - 21
  • [42] Bioprinting of Thermoresponsive Hydrogels for Next Generation Tissue Engineering: A Review
    Suntornnond, Ratima
    An, Jia
    Chua, Chee Kai
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2017, 302 (01)
  • [43] Development of injectable hydrogels based on human amniotic membrane and polyethyleneglycol-modified nanosilicates for tissue engineering applications
    Kafili, Golara
    Tamjid, Elnaz
    Niknejad, Hassan
    Simchi, Abdolreza
    EUROPEAN POLYMER JOURNAL, 2022, 179
  • [44] Collagen/chitosan/hyaluronic acid - based injectable hydrogels for tissue engineering applications - design, physicochemical and biological characterization
    Gilarska, Adriana
    Lewandowska-Lancucka, Joanna
    Horak, Wojciech
    Nowakowska, Maria
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2018, 170 : 152 - 162
  • [45] Injectable hydrogels for bone and cartilage tissue engineering: a review
    Nafiseh Olov
    Shadab Bagheri-Khoulenjani
    Hamid Mirzadeh
    Progress in Biomaterials, 2022, 11 : 113 - 135
  • [46] Injectable hydrogels: a new paradigm for osteochondral tissue engineering
    Singh, Yogendra Pratap
    Moses, Joseph Christakiran
    Bhardwaj, Nandana
    Mandal, Biman B.
    JOURNAL OF MATERIALS CHEMISTRY B, 2018, 6 (35) : 5499 - 5529
  • [47] CELLULOSE-BASED HYDROGELS IN TISSUE ENGINEERING APPLICATIONS
    Rusu, Daniela
    Ciolacu, Diana
    Simionescu, Bogdan C.
    CELLULOSE CHEMISTRY AND TECHNOLOGY, 2019, 53 (9-10): : 907 - 923
  • [48] Natural-Based Hydrogels for Tissue Engineering Applications
    Gomez-Florit, Manuel
    Pardo, Alberto
    Domingues, Rui M. A.
    Graca, Ana L.
    Babo, Pedro S.
    Reis, Rui L.
    Gomes, Manuela E.
    MOLECULES, 2020, 25 (24):
  • [49] Chitosan based Hydrogels for Vascular Tissue Engineering Applications
    Aussel, A.
    Berard, X.
    Thebaud, N.
    Siadous, R.
    Bareille, R.
    Brizzi, V.
    Durand, M.
    Delmond, S.
    Montembault, A.
    David, L.
    Bordenave, L.
    TISSUE ENGINEERING PART A, 2015, 21 : S228 - S229
  • [50] Injectable alginate hydrogels for cell delivery in tissue engineering
    Bidarra, Silvia J.
    Barrias, Cristina C.
    Granja, Pedro L.
    ACTA BIOMATERIALIA, 2014, 10 (04) : 1646 - 1662