Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications

被引:101
|
作者
Gopinathan, Janarthanan [1 ,2 ]
Noh, Insup [1 ,2 ]
机构
[1] Seoul Natl Univ Sci & Technol, Seoul Tech, Dept Chem & Biomol Engn, 232 Gongneung Ro, Seoul 01811, South Korea
[2] Seoul Natl Univ Sci & Technol, Seoul Tech, Convergence Inst Biomed Engn & Biomat, 232 Gongneung Ro, Seoul 01811, South Korea
基金
新加坡国家研究基金会;
关键词
Click chemistry; Hydrogels; 3D bioprinting; Tissue engineering; Regenerative medicine; AZIDE-ALKYNE CYCLOADDITION; HYALURONIC-ACID HYDROGELS; MICHAEL ADDITION-REACTIONS; SELF-HEALING HYDROGEL; CROSS-LINKING; COPPER-FREE; POLY(ETHYLENE GLYCOL); PEG HYDROGELS; DELIVERY; DIFFERENTIATION;
D O I
10.1007/s13770-018-0152-8
中图分类号
Q813 [细胞工程];
学科分类号
摘要
BACKGROUND: The tissue engineering and regenerative medicine approach require biomaterials which are biocompatible, easily reproducible in less time, biodegradable and should be able to generate complex three-dimensional (3D) structures to mimic the native tissue structures. Click chemistry offers the much-needed multifunctional hydrogel materials which are interesting biomaterials for the tissue engineering and bioprinting inks applications owing to their excellent ability to form hydrogels with printability instantly and to retain the live cells in their 3D network without losing the mechanical integrity even under swollen state. METHODS: In this review, we present the recent developments of in situ hydrogel in the field of click chemistry reported for the tissue engineering and 3D bioinks applications, by mainly covering the diverse types of click chemistry methods such as Diels-Alder reaction, strain-promoted azide-alkyne cycloaddition reactions, thiol-ene reactions, oxime reactions and other interrelated reactions, excluding enzyme-based reactions. RESULTS: The click chemistry-based hydrogels are formed spontaneously on mixing of reactive compounds and can encapsulate live cells with high viability for a long time. The recent works reported by combining the advantages of click chemistry and 3D bioprinting technology have shown to produce 3D tissue constructs with high resolution using biocompatible hydrogels as bioinks and in situ injectable forms. CONCLUSION: Interestingly, the emergence of click chemistry reactions in bioink synthesis for 3D bioprinting have shown the massive potential of these reaction methods in creating 3D tissue constructs. However, the limitations and challenges involved in the click chemistry reactions should be analyzed and bettered to be applied to tissue engineering and 3D bioinks. The future scope of these materials is promising, including their applications in in situ 3D bioprinting for tissue or organ regeneration.
引用
收藏
页码:531 / 546
页数:16
相关论文
共 50 条
  • [31] Advanced injectable hydrogels for cartilage tissue engineering
    Zhu, Senbo
    Li, Yong
    He, Zeju
    Ji, Lichen
    Zhang, Wei
    Tong, Yu
    Luo, Junchao
    Yu, Dongsheng
    Zhang, Qiong
    Bi, Qing
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [32] Injectable hydrogels for tendon and ligament tissue engineering
    Liu, Richun
    Zhang, Shichen
    Chen, Xiao
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2020, 14 (09) : 1333 - 1348
  • [33] An overview of injectable polymeric hydrogels for tissue engineering
    Sivashanmugam, A.
    Kumar, R. Arun
    Priya, M. Vishnu
    Nair, Shantikumar V.
    Jayakumar, R.
    EUROPEAN POLYMER JOURNAL, 2015, 72 : 543 - 565
  • [34] Click chemistry-based imaging to study the tissue distribution of the curcumin-protein complex in mice
    Zhou, Jingyi
    Wang, Weicang
    Zhang, Jianan
    Du, Zheyuan
    Yang, Haixia
    Zhang, Guodong
    FOOD & FUNCTION, 2020, 11 (02) : 1684 - 1691
  • [35] Recent advances in hyaluronic acid-based hydrogels for 3D bioprinting in tissue engineering applications
    Ding Y.-W.
    Zhang X.-W.
    Mi C.-H.
    Qi X.-Y.
    Zhou J.
    Wei D.-X.
    Smart Materials in Medicine, 2023, 4 : 59 - 68
  • [36] Piezoelectric peptide-based injectable hydrogels for bone tissue engineering
    Kose, Ayse
    Bleukx, Joris
    Deschaume, Olivier
    Volodin, Alexander
    Bartic, Carmen
    Geris, Liesbet
    TISSUE ENGINEERING PART A, 2022, 28 : 272 - 272
  • [37] 3D bioprinting of dual-crosslinked nanocellulose hydrogels for tissue engineering applications
    Monfared, Marzieh
    Mawad, Damia
    Rnjak-Kovacina, Jelena
    Stenzel, Martina H.
    JOURNAL OF MATERIALS CHEMISTRY B, 2021, 9 (31) : 6163 - 6175
  • [38] Click Chemistry-Based Enrichment Columns for Global Identification of Glycoproteins
    Qian, Xiao-Dong
    Nyberg, Tamara
    Huang, Wenxi
    Slade, Peter
    Colquhoun, David
    Graham, David
    Agnew, Brian
    GLYCOBIOLOGY, 2010, 20 (11) : 1514 - 1514
  • [39] Development of Injectable Hyaluronic Acid/Cellulose Nanocrystals Bionanocomposite Hydrogels for Tissue Engineering Applications
    Domingues, Rui M. A.
    Silva, Marta
    Gershovich, Pavel
    Betta, Sefano
    Babo, Pedro
    Caridade, Sofia G.
    Mano, Joao F.
    Motta, Antonella
    Reis, Rui L.
    Gomes, Manuela E.
    BIOCONJUGATE CHEMISTRY, 2015, 26 (08) : 1571 - 1581
  • [40] 3D Bioprinting of Hydrogels for Cartilage Tissue Engineering
    Huang, Jianghong
    Xiong, Jianyi
    Wang, Daping
    Zhang, Jun
    Yang, Lei
    Sun, Shuqing
    Liang, Yujie
    GELS, 2021, 7 (03)