Fractional variational calculus for nondifferentiable functions

被引:32
|
作者
Almeida, Ricardo [1 ]
Torres, Delfim F. M. [1 ]
机构
[1] Univ Aveiro, Dept Math, P-3810193 Aveiro, Portugal
关键词
Fractional calculus; Jumarie's modified Riemann-Liouville derivative; Natural boundary conditions; Isoperimetric problems; Holonomic constraints; EULER-LAGRANGE EQUATIONS; FORMULATION; MECHANICS; SYSTEMS; ENERGY; TERMS;
D O I
10.1016/j.camwa.2011.03.098
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove necessary optimality conditions, in the class of continuous functions, for variational problems defined with Jumarie's modified Riemann-Liouville derivative. The fractional basic problem of the calculus of variations with free boundary conditions is considered, as well as problems with isoperimetric and holonomic constraints. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3097 / 3104
页数:8
相关论文
共 50 条
  • [21] On Weighted Fractional Calculus With Respect to Functions
    Zahra, Tazeen
    Fahad, Hafiz Muhammad
    Rehman, Mujeeb ur
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (05) : 5642 - 5659
  • [22] EXPONENTIAL FUNCTIONS OF DISCRETE FRACTIONAL CALCULUS
    Acar, Nihan
    Atici, Ferhan M.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2013, 7 (02) : 343 - 353
  • [23] On the fractional calculus functions of a fractal function
    Yao K.
    Su W.
    Zhou S.
    Applied Mathematics-A Journal of Chinese Universities, 2002, 17 (4) : 377 - 381
  • [24] Symmetric duality for a class of nondifferentiable multi-objective fractional variational problems
    Mishra, S. K.
    Wang, S. Y.
    Lai, K. K.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (02) : 1093 - 1110
  • [25] ON EFFICIENCY AND DUALITY FOR A CLASS OF NONCONVEX NONDIFFERENTIABLE MULTIOBJECTIVE FRACTIONAL VARIATIONAL CONTROL PROBLEMS
    Antczak, Tadeusz
    Arana-Jimenez, Manuel
    Treanta, Savin
    OPUSCULA MATHEMATICA, 2023, 43 (03) : 335 - 391
  • [26] Complex geodesics and variational calculus for univalent functions
    Krushkal, Samuel L.
    COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VII, 2017, 699 : 175 - 197
  • [27] Fractional variational calculus with classical and combined Caputo derivatives
    Odzijewicz, Tatiana
    Malinowska, Agnieszka B.
    Torres, Delfim F. M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (03) : 1507 - 1515
  • [28] Reflection symmetric formulation of generalized fractional variational calculus
    Małgorzata Klimek
    Maria Lupa
    Fractional Calculus and Applied Analysis, 2013, 16 : 243 - 261
  • [29] Variable Order Fractional Variational Calculus for Double Integrals
    Odzijewicz, Tatiana
    Malinowska, Agnieszka B.
    Torres, Delfim F. M.
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 6873 - 6878
  • [30] Reflection symmetric formulation of generalized fractional variational calculus
    Klimek, Magorzata
    Lupa, Maria
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (01) : 243 - 261