Reflection symmetric formulation of generalized fractional variational calculus

被引:0
|
作者
Małgorzata Klimek
Maria Lupa
机构
[1] Czestochowa University of Technology,Institute of Mathematics
关键词
fractional calculus; generalized fractional integrals and derivatives; fractional mechanics; Euler-Lagrange equations; localization; Primary 26A33; Secondary 34A08, 49S05, 70H03;
D O I
暂无
中图分类号
学科分类号
摘要
We define generalized fractional derivatives (GFDs) symmetric and anti-symmetric w.r.t. the reflection symmetry in a finite interval. Arbitrary functions are split into parts with well defined reflection symmetry properties in a hierarchy of intervals [0, b/2m], m ∈ ℕ0. For these parts — [J]-projections of function, we derive the representation formulas for generalized fractional operators (GFOs) and examine integration properties. It appears that GFOs can be reduced to operators determined in subintervals [0, b/2m]. The results are applied in the derivation of Euler-Lagrange equations for action dependent on Riemann-Liouville type GFDs. We show that for Lagrangian being a sum (finite or not) of monomials, the obtained equations of motion can be localized in arbitrary short subinterval [0, b/2m].
引用
收藏
页码:243 / 261
页数:18
相关论文
共 50 条
  • [1] Reflection symmetric formulation of generalized fractional variational calculus
    Klimek, Magorzata
    Lupa, Maria
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (01) : 243 - 261
  • [2] Generalized Multiparameters Fractional Variational Calculus
    Agrawal, Om Prakash
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 2012
  • [3] Fractional-Order Variational Calculus with Generalized Boundary Conditions
    Herzallah, Mohamed A. E.
    Baleanu, Dumitru
    ADVANCES IN DIFFERENCE EQUATIONS, 2011,
  • [4] Fractional-Order Variational Calculus with Generalized Boundary Conditions
    MohamedAE Herzallah
    Dumitru Baleanu
    Advances in Difference Equations, 2011
  • [5] Generalized variational calculus in terms of multi-parameters fractional derivatives
    Agrawal, Om P.
    Muslih, Sami I.
    Baleanu, Dumitru
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (12) : 4756 - 4767
  • [6] Generalized Euler-Lagrange equations for fuzzy fractional variational calculus
    Soolaki, Javad
    Fard, Omid Solaymani
    Borzabadi, Akbar Hashemi
    Mathematical Communications, 2016, 21 (02) : 199 - 218
  • [8] Variational calculus with fractional action
    Gaies, A
    Ziar, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2004, 119 (05): : 425 - 431
  • [9] On Fractional Symmetric Hahn Calculus
    Patanarapeelert, Nichaphat
    Sitthiwirattham, Thanin
    MATHEMATICS, 2019, 7 (10)
  • [10] GENERALIZED VARIATIONAL FORMULATION
    ATANACKOVIC, TM
    JONES, SE
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 48 (03) : 672 - 679