Reflection symmetric formulation of generalized fractional variational calculus

被引:0
|
作者
Małgorzata Klimek
Maria Lupa
机构
[1] Czestochowa University of Technology,Institute of Mathematics
关键词
fractional calculus; generalized fractional integrals and derivatives; fractional mechanics; Euler-Lagrange equations; localization; Primary 26A33; Secondary 34A08, 49S05, 70H03;
D O I
暂无
中图分类号
学科分类号
摘要
We define generalized fractional derivatives (GFDs) symmetric and anti-symmetric w.r.t. the reflection symmetry in a finite interval. Arbitrary functions are split into parts with well defined reflection symmetry properties in a hierarchy of intervals [0, b/2m], m ∈ ℕ0. For these parts — [J]-projections of function, we derive the representation formulas for generalized fractional operators (GFOs) and examine integration properties. It appears that GFOs can be reduced to operators determined in subintervals [0, b/2m]. The results are applied in the derivation of Euler-Lagrange equations for action dependent on Riemann-Liouville type GFDs. We show that for Lagrangian being a sum (finite or not) of monomials, the obtained equations of motion can be localized in arbitrary short subinterval [0, b/2m].
引用
收藏
页码:243 / 261
页数:18
相关论文
共 50 条
  • [21] Generalized binomials in fractional calculus
    D'ovidio, Mirko
    Lai, Anna Chiara
    Loreti, Paola
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 101 (3-4): : 373 - 395
  • [22] On the Origins of Generalized Fractional Calculus
    Kiryakova, Virginia
    41ST INTERNATIONAL CONFERENCE APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'15), 2015, 1690
  • [23] The Generalized Fractional Calculus of Variations
    Odzijewicz, Tatiana
    Torres, Delfim F. M.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2014, 38 (01) : 93 - 117
  • [24] ON GENERALIZED THE CONFORMABLE FRACTIONAL CALCULUS
    Sarikaya, M. Z.
    Budak, H.
    Usta, F.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (04): : 792 - 799
  • [25] HAHN'S SYMMETRIC QUANTUM VARIATIONAL CALCULUS
    Brito da Cruz, Artur M. C.
    Martins, Natalia
    Torres, Delfim F. M.
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2013, 3 (01): : 77 - 94
  • [26] An operational calculus formulation of fractional calculus with general analytic kernels
    Rani, Noosheza
    Fernandez, Arran
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (12): : 4238 - 4255
  • [27] A Stochastic Fractional Calculus with Applications to Variational Principles
    Zine, Houssine
    Torres, Delfim F. M.
    FRACTAL AND FRACTIONAL, 2020, 4 (03) : 1 - 11
  • [28] Generalized Memory: Fractional Calculus Approach
    Tarasov, Vasily E.
    FRACTAL AND FRACTIONAL, 2018, 2 (04) : 1 - 17
  • [29] Generalized integral inequalities for fractional calculus
    Samraiz, Muhammad
    Iqbal, Sajid
    Pecaric, Josip
    COGENT MATHEMATICS & STATISTICS, 2018, 5 (01):
  • [30] Fractional calculus and generalized Rodrigues formula
    Rida, SZ
    El-Sayed, AMA
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 147 (01) : 29 - 43