Normality of 2-Cayley digraphs

被引:7
|
作者
Arezoomand, Majid [1 ]
Taeri, Bijan [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
关键词
2-Cayley digraph; Normal 2-Cayley digraph; Automorphism group of digraph; BI-CAYLEY GRAPHS;
D O I
10.1016/j.disc.2014.10.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A digraph Gamma is called a 2-Cayley digraph over a group G, if there exists a semiregular subgroup R-G of Aut(Gamma) isomorphic to G with two orbits. We say that Gamma is normal if RG is a normal subgroup of Aut(Gamma). In this paper, we determine the normalizer of RG in Aut(Gamma). We show that the automorphism group of each normal 2-Cayley digraph over a group with solvable automorphism group, is solvable. We prove that for each finite group G not equal Q(8) x Z(2)(r), r >= 0, where Q(8) is the quaternion group of order 8 and Z(2) is the cyclic group of order 2, there exists a normal 2-Cayley graph over G and that every finite group has a normal 2-Cayley digraph. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:41 / 47
页数:7
相关论文
共 50 条
  • [41] Antimagic and magic labelings in Cayley digraphs
    Chelvam, T. Tamizh
    Rilwan, N. Mohamed
    Kalaimurugan, G.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2013, 55 : 65 - 71
  • [42] The Structure of Components of Cayley Conjugate Digraphs
    Pandugayala, Venkata Subbaiah
    Levaku, Madhavi
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2022, 46 (01) : 81 - 90
  • [43] Cayley digraphs with normal adjacency matrices
    Lyubshin, David S.
    Savchenko, Sergey V.
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4343 - 4348
  • [44] ON POSITIVE AND NEGATIVE ATOMS OF CAYLEY DIGRAPHS
    ZEMOR, G
    DISCRETE APPLIED MATHEMATICS, 1989, 23 (02) : 193 - 195
  • [45] On isomorphisms of minimal cayley graphs and digraphs
    Li, CH
    Zhou, S
    GRAPHS AND COMBINATORICS, 2001, 17 (02) : 307 - 314
  • [46] INFINITE HAMILTONIAN PATHS IN CAYLEY DIGRAPHS
    JUNGREIS, IL
    DISCRETE MATHEMATICS, 1985, 54 (02) : 167 - 180
  • [47] THE DIAMETERS OF ALMOST ALL CAYLEY DIGRAPHS
    孟吉翔
    刘新
    Acta Mathematicae Applicatae Sinica(English Series), 1997, (04) : 410 - 413
  • [48] The diameters of almost all cayley digraphs
    Meng J.
    Liu X.
    Acta Mathematicae Applicatae Sinica, 1997, 13 (4) : 410 - 413
  • [49] VOSPERIAN AND SUPERCONNECTED ABELIAN CAYLEY DIGRAPHS
    HAMIDOUNE, YO
    LLADO, AS
    SERRA, O
    GRAPHS AND COMBINATORICS, 1991, 7 (02) : 143 - 152
  • [50] Perfect directed codes in Cayley digraphs
    Wang, Yan
    Yuan, Kai
    Zhao, Ying
    AIMS MATHEMATICS, 2024, 9 (09): : 23878 - 23889