Normality of 2-Cayley digraphs

被引:7
|
作者
Arezoomand, Majid [1 ]
Taeri, Bijan [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
关键词
2-Cayley digraph; Normal 2-Cayley digraph; Automorphism group of digraph; BI-CAYLEY GRAPHS;
D O I
10.1016/j.disc.2014.10.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A digraph Gamma is called a 2-Cayley digraph over a group G, if there exists a semiregular subgroup R-G of Aut(Gamma) isomorphic to G with two orbits. We say that Gamma is normal if RG is a normal subgroup of Aut(Gamma). In this paper, we determine the normalizer of RG in Aut(Gamma). We show that the automorphism group of each normal 2-Cayley digraph over a group with solvable automorphism group, is solvable. We prove that for each finite group G not equal Q(8) x Z(2)(r), r >= 0, where Q(8) is the quaternion group of order 8 and Z(2) is the cyclic group of order 2, there exists a normal 2-Cayley graph over G and that every finite group has a normal 2-Cayley digraph. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:41 / 47
页数:7
相关论文
共 50 条
  • [21] A Family of Nonnormal Cayley Digraphs
    Yan Quan FENG
    Dian Jun WANG
    Jing Lin CHEN
    Acta Mathematica Sinica(English Series), 2001, 17 (01) : 147 - 152
  • [22] Isomorphisms of connected Cayley digraphs
    Li, CH
    GRAPHS AND COMBINATORICS, 1998, 14 (01) : 37 - 44
  • [23] Asymptotic enumeration of Cayley digraphs
    Joy Morris
    Pablo Spiga
    Israel Journal of Mathematics, 2021, 242 : 401 - 459
  • [24] A Family of Nonnormal Cayley Digraphs
    Yan Quan Feng
    Dian Jun Wang
    Jing Lin Chen
    Acta Mathematica Sinica, 2001, 17 : 147 - 152
  • [25] Isomorphisms of Connected Cayley Digraphs
    Cai Heng Li
    Graphs and Combinatorics, 1998, 14 : 37 - 44
  • [26] Asymptotic enumeration of Cayley digraphs
    Morris, Joy
    Spiga, Pablo
    ISRAEL JOURNAL OF MATHEMATICS, 2021, 242 (01) : 401 - 459
  • [27] The metric dimension of Cayley digraphs
    Fehr, M
    Gosselin, S
    Oellermann, OR
    DISCRETE MATHEMATICS, 2006, 306 (01) : 31 - 41
  • [28] On Hamiltonian Property of Cayley Digraphs
    Fang DUAN
    Qiong-xiang HUANG
    Acta Mathematicae Applicatae Sinica, 2024, 40 (02) : 547 - 556
  • [29] THE CONNECTIVITY OF HIERARCHICAL CAYLEY DIGRAPHS
    HAMIDOUNE, YO
    LLADO, AS
    SERRA, O
    DISCRETE APPLIED MATHEMATICS, 1992, 37-8 : 275 - 280
  • [30] A Note on Moore Cayley Digraphs
    Alexander L. Gavrilyuk
    Mitsugu Hirasaka
    Vladislav Kabanov
    Graphs and Combinatorics, 2021, 37 : 1509 - 1520