Spanning bipartite graphs with high degree sum in graphs

被引:1
|
作者
Chen, Guantao [1 ]
Chiba, Shuya [2 ]
Gould, Ronald J. [3 ]
Gu, Xiaofeng [4 ]
Saito, Akira [5 ]
Tsugaki, Masao
Yamashita, Tomoki [6 ]
机构
[1] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
[2] Kumamoto Univ, Fac Adv Sci & Technol, Appl Math, 2-39-1 Kurokami, Kumamoto 8608555, Japan
[3] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[4] Univ West Georgia, Dept Math, Carrollton, GA 30118 USA
[5] Nihon Univ, Dept Informat Sci, Setagaya Ku, Sakurajosui 3-25-40, Tokyo 1568550, Japan
[6] Kindai Univ, Dept Sci, 3-4-1 Kowakae, Higashiosaka, Osaka 5778502, Japan
关键词
Hamiltonian cycle; Ore's Theorem; Bipartite graph;
D O I
10.1016/j.disc.2019.111663
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical Ore's Theorem states that every graph G of order n >= 3 with sigma(2)(G) >= n is hamiltonian, where sigma(2)(G) = min{d(G)(x) + d(G)(y): x, y is an element of V(G), x not equal y, xy is not an element of E(G)}. Recently, Ferrara, Jacobson and Powell (Discrete Math. 312 (2012), 459-461) extended the Moon -Moser Theorem and characterized the non-hamiltonian balanced bipartite graphs H of order 2n >= 4 with partite sets X and Y satisfying sigma(1,1)(H) >= n, where sigma(1.1)(H) = min{d(H)(x)+d(H)(y): x is an element of X, y is an element of Y, xy is not an element of E(H)}. Though the latter result apparently deals with a narrower class of graphs, we prove in this paper that it implies Ore's Theorem for graphs of even order. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Spanning k-ended trees of bipartite graphs
    Kano, Mikio
    Matsuda, Haruhide
    Tsugaki, Masao
    Yan, Guiying
    DISCRETE MATHEMATICS, 2013, 313 (24) : 2903 - 2907
  • [42] The Enumeration of Spanning Trees in Dual, Bipartite and Reduced Graphs
    Lotfi, Dounia
    El Marraki, Mohamed
    Aboutajdine, Driss
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2015, 18 (06): : 673 - 687
  • [43] The sum number and integral sum number of complete bipartite graphs
    Wang, Y
    Liu, BL
    DISCRETE MATHEMATICS, 2001, 239 (1-3) : 69 - 82
  • [44] On the degree sum energy of total transformation graphs of regular graphs
    Revankar, D. S.
    Veeragoudar, Jaishri B.
    Patil, M. M.
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2023, 44 (02): : 217 - 229
  • [45] MINIMUM CONGESTION SPANNING TREES IN BIPARTITE AND RANDOM GRAPHS
    M.I. Ostrovskii
    ActaMathematicaScientia, 2011, 31 (02) : 634 - 640
  • [46] MINIMUM CONGESTION SPANNING TREES IN BIPARTITE AND RANDOM GRAPHS
    Ostrovskii, M. I.
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (02) : 634 - 640
  • [47] Spanning trees in graphs without large bipartite holes
    Han, Jie
    Hu, Jie
    Ping, Lidan
    Wang, Guanghui
    Wang, Yi
    Yang, Donglei
    COMBINATORICS PROBABILITY AND COMPUTING, 2024, 33 (03) : 270 - 285
  • [48] On minimum spanning trees for random Euclidean bipartite graphs
    Correddu, Mario
    Trevisan, Dario
    COMBINATORICS PROBABILITY AND COMPUTING, 2024, 33 (03) : 319 - 350
  • [49] Spanning Cycles Through Specified Edges in Bipartite Graphs
    Zamani, Reza
    West, Douglas B.
    JOURNAL OF GRAPH THEORY, 2012, 71 (01) : 1 - 17
  • [50] Locally connected spanning trees in cographs, complements of bipartite graphs and doubly chordal graphs
    Panda, B. S.
    Pradhan, D.
    INFORMATION PROCESSING LETTERS, 2010, 110 (23) : 1067 - 1073