Spanning bipartite graphs with high degree sum in graphs

被引:1
|
作者
Chen, Guantao [1 ]
Chiba, Shuya [2 ]
Gould, Ronald J. [3 ]
Gu, Xiaofeng [4 ]
Saito, Akira [5 ]
Tsugaki, Masao
Yamashita, Tomoki [6 ]
机构
[1] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
[2] Kumamoto Univ, Fac Adv Sci & Technol, Appl Math, 2-39-1 Kurokami, Kumamoto 8608555, Japan
[3] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[4] Univ West Georgia, Dept Math, Carrollton, GA 30118 USA
[5] Nihon Univ, Dept Informat Sci, Setagaya Ku, Sakurajosui 3-25-40, Tokyo 1568550, Japan
[6] Kindai Univ, Dept Sci, 3-4-1 Kowakae, Higashiosaka, Osaka 5778502, Japan
关键词
Hamiltonian cycle; Ore's Theorem; Bipartite graph;
D O I
10.1016/j.disc.2019.111663
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical Ore's Theorem states that every graph G of order n >= 3 with sigma(2)(G) >= n is hamiltonian, where sigma(2)(G) = min{d(G)(x) + d(G)(y): x, y is an element of V(G), x not equal y, xy is not an element of E(G)}. Recently, Ferrara, Jacobson and Powell (Discrete Math. 312 (2012), 459-461) extended the Moon -Moser Theorem and characterized the non-hamiltonian balanced bipartite graphs H of order 2n >= 4 with partite sets X and Y satisfying sigma(1,1)(H) >= n, where sigma(1.1)(H) = min{d(H)(x)+d(H)(y): x is an element of X, y is an element of Y, xy is not an element of E(H)}. Though the latter result apparently deals with a narrower class of graphs, we prove in this paper that it implies Ore's Theorem for graphs of even order. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] The minimum color sum of bipartite graphs
    Bar-Noy, A
    Kortsarz, G
    AUTOMATA, LANGUAGES AND PROGRAMMING, 1997, 1256 : 738 - 748
  • [22] On the sum of all distances in bipartite graphs
    Li, Shuchao
    Song, Yibing
    DISCRETE APPLIED MATHEMATICS, 2014, 169 : 176 - 185
  • [23] Enumeration for spanning forests of complete bipartite graphs
    Jin, YL
    Liu, CL
    ARS COMBINATORIA, 2004, 70 : 135 - 138
  • [24] Spanning k-trees of Bipartite Graphs
    Kano, Mikio
    Ozeki, Kenta
    Suzuki, Kazuhiro
    Tsugaki, Masao
    Yamashit, Tomoki
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (01):
  • [25] Embedding Spanning Bipartite Graphs of Small Bandwidth
    Knox, Fiachra
    Treglown, Andrew
    COMBINATORICS PROBABILITY & COMPUTING, 2013, 22 (01): : 71 - 96
  • [26] Counting degree sequences of spanning trees in bipartite graphs: A graph-theoretic proof
    Fischer, Anja
    Fischer, Frank
    JOURNAL OF GRAPH THEORY, 2019, 92 (03) : 230 - 236
  • [27] Tenacity and Rupture Degree of Permutation Graphs of Complete Bipartite Graphs
    Li, Fengwei
    Ye, Qingfang
    Li, Xueliang
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2011, 34 (03) : 423 - 434
  • [28] EMBEDDING SPANNING BOUNDED DEGREE GRAPHS IN RANDOMLY PERTURBED GRAPHS
    Bottcher, Julia
    Montgomery, Richard
    Parczyk, Olaf
    Person, Yury
    MATHEMATIKA, 2020, 66 (02) : 422 - 447
  • [29] On the sum of the k largest eigenvalues of graphs and maximal energy of bipartite graphs
    Das, Kinkar Chandra
    Mojallal, Seyed Ahmad
    Sun, Shaowei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 569 : 175 - 194
  • [30] Bipartite Graphs with the Maximum Sum of Squares of Degrees
    Zhang, Sheng-gui
    Zhou, Chun-cao
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (03): : 801 - 806