Predicting Solar Flares with Machine Learning: Investigating Solar Cycle Dependence

被引:53
|
作者
Wang, Xiantong [1 ]
Chen, Yang [2 ]
Toth, Gabor [1 ]
Manchester, Ward B. [1 ]
Gombosi, Tamas, I [1 ]
Hero, Alfred O. [3 ]
Jiao, Zhenbang [2 ]
Sun, Hu [2 ]
Jin, Meng [4 ,5 ]
Liu, Yang [6 ]
机构
[1] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[4] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA USA
[5] SETI Inst, Mountain View, CA 94043 USA
[6] Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA
来源
ASTROPHYSICAL JOURNAL | 2020年 / 895卷 / 01期
基金
美国国家科学基金会;
关键词
Solar flares; Solar activity; RECONNECTION; MODEL;
D O I
10.3847/1538-4357/ab89ac
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A deep learning network, long short-term memory (LSTM), is used to predict whether an active region (AR) will produce a flare of class Gamma in the next 24 hr. We consider Gamma to be >= M (strong flare), >= C (medium flare), and >= A (any flare) class. The essence of using LSTM, which is a recurrent neural network, is its ability to capture temporal information on the data samples. The input features are time sequences of 20 magnetic parameters from the space weather Helioseismic and Magnetic Imager AR patches. We analyze ARs from 2010 June to 2018 December and their associated flares identified in the Geostationary Operational Environmental Satellite X-ray flare catalogs. Our results produce skill scores consistent with recently published results using LSTMs and are better than the previous results using a single time input. The skill scores from the model show statistically significant variation when different years of data are chosen for training and testing. In particular, 2015-2018 have better true skill statistic and Heidke skill scores for predicting >= C medium flares than 2011-2014, when the difference in flare occurrence rates is properly taken into account.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Predicting Active Solar Power with Machine Learning and Weather Data
    Swikriti Khadke
    Brindha Ramasubramanian
    Pranto Paul
    Raghavendra Lawaniya
    Suma Dawn
    Angana Chakraborty
    Biswajit Mandal
    Goutam Kumar Dalapati
    Avishek Kumar
    Seeram Ramakrishna
    Materials Circular Economy, 2023, 5 (1):
  • [32] Statistical Properties of Solar Flares and Coronal Mass Ejections through the Solar Cycle
    Telloni, Daniele
    Carbone, Vincenzo
    Lepreti, Fabio
    Antonucci, Ester
    PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL SOLAR WIND CONFERENCE (SOLAR WIND 14), 2016, 1720
  • [33] Solar flares and active regions in the Hale sector boundary in Solar Cycle 24
    Liu, Claire L.
    Zhao, Junwei
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (02) : 1910 - 1914
  • [34] The strongest solar flares of Solar Cycle 25 and their subionospheric impact: data and modeling
    Sreckovic, V. A.
    Kolarski, A.
    Langovic, M.
    Arnaut, F.
    Jevremovic, S.
    Mijic, Z. R.
    CONTRIBUTIONS OF THE ASTRONOMICAL OBSERVATORY SKALNATE PLESO, 2025, 55 (02): : 88 - 94
  • [35] Geomagnetic consequences of the solar flares during the last Hale solar cycle (II)
    Maris, G
    Popescu, MD
    Mierla, M
    SOLSPA 2001: PROCEEDINGS OF THE SECOND SOLAR CYCLE AND SPACE WEATHER EUROCONFERENCE, 2002, 477 : 451 - 454
  • [36] Predicting solar flares by data assimilation in avalanche models
    Belanger, Eric
    Vincent, Alain
    Charbonneau, Paul
    SOLAR PHYSICS, 2007, 245 (01) : 141 - 165
  • [37] Seismic Transients from Flares in Solar Cycle 23
    Donea, Alina
    SPACE SCIENCE REVIEWS, 2011, 158 (2-4) : 451 - 469
  • [38] An Analysis of the Sunspot Groups and Flares of Solar Cycle 23
    Donald C. Norquist
    Solar Physics, 2011, 269 : 111 - 127
  • [39] An Analysis of the Sunspot Groups and Flares of Solar Cycle 23
    Norquist, Donald C.
    SOLAR PHYSICS, 2011, 269 (01) : 111 - 127
  • [40] Distribution of Ha flares during solar cycle 23
    Joshi, B. (bhuwan@upso.ernet.in), 1600, EDP Sciences (431):