Predicting Solar Flares with Machine Learning: Investigating Solar Cycle Dependence

被引:53
|
作者
Wang, Xiantong [1 ]
Chen, Yang [2 ]
Toth, Gabor [1 ]
Manchester, Ward B. [1 ]
Gombosi, Tamas, I [1 ]
Hero, Alfred O. [3 ]
Jiao, Zhenbang [2 ]
Sun, Hu [2 ]
Jin, Meng [4 ,5 ]
Liu, Yang [6 ]
机构
[1] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[4] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA USA
[5] SETI Inst, Mountain View, CA 94043 USA
[6] Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA
来源
ASTROPHYSICAL JOURNAL | 2020年 / 895卷 / 01期
基金
美国国家科学基金会;
关键词
Solar flares; Solar activity; RECONNECTION; MODEL;
D O I
10.3847/1538-4357/ab89ac
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A deep learning network, long short-term memory (LSTM), is used to predict whether an active region (AR) will produce a flare of class Gamma in the next 24 hr. We consider Gamma to be >= M (strong flare), >= C (medium flare), and >= A (any flare) class. The essence of using LSTM, which is a recurrent neural network, is its ability to capture temporal information on the data samples. The input features are time sequences of 20 magnetic parameters from the space weather Helioseismic and Magnetic Imager AR patches. We analyze ARs from 2010 June to 2018 December and their associated flares identified in the Geostationary Operational Environmental Satellite X-ray flare catalogs. Our results produce skill scores consistent with recently published results using LSTMs and are better than the previous results using a single time input. The skill scores from the model show statistically significant variation when different years of data are chosen for training and testing. In particular, 2015-2018 have better true skill statistic and Heidke skill scores for predicting >= C medium flares than 2011-2014, when the difference in flare occurrence rates is properly taken into account.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Predicting the efficiency of luminescent solar concentrators for solar energy harvesting using machine learning
    Ferreira, Rute A. S.
    Correia, Sandra F. H.
    Fu, Lianshe
    Georgieva, Petia
    Antunes, Mario
    Andre, Paulo S.
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [22] Predicting the efficiency of luminescent solar concentrators for solar energy harvesting using machine learning
    Rute A. S. Ferreira
    Sandra F. H. Correia
    Lianshe Fu
    Petia Georgieva
    Mario Antunes
    Paulo S. André
    Scientific Reports, 14
  • [23] Using Machine Learning Methods to Forecast if Solar Flares Will Be Associated with CMEs and SEPs
    Inceoglu, Fadil
    Jeppesen, Jacob H.
    Kongstad, Peter
    Marcano, Nestor J. Hernandez
    Jacobsen, Rune H.
    Karoff, Christoffer
    ASTROPHYSICAL JOURNAL, 2018, 861 (02):
  • [24] Forecasting Solar Flares Using Magnetogram-based Predictors and Machine Learning
    Florios, Kostas
    Kontogiannis, Ioannis
    Park, Sung-Hong
    Guerra, Jordan A.
    Benvenuto, Federico
    Bloomfield, D. Shaun
    Georgoulis, Manolis K.
    SOLAR PHYSICS, 2018, 293 (02)
  • [25] Forecasting Solar Flares Using Magnetogram-based Predictors and Machine Learning
    Kostas Florios
    Ioannis Kontogiannis
    Sung-Hong Park
    Jordan A. Guerra
    Federico Benvenuto
    D. Shaun Bloomfield
    Manolis K. Georgoulis
    Solar Physics, 2018, 293
  • [26] Predicting solar cycle 24 with a solar dynamo model
    Choudhuri, Arnab Rai
    Chatterjee, Piyali
    Jiang, Jie
    PHYSICAL REVIEW LETTERS, 2007, 98 (13)
  • [27] Solar cycle dependence of scaling in solar wind fluctuations
    Chapman, S. C.
    Hnat, B.
    Kiyani, K.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2008, 15 (03) : 445 - 455
  • [28] DEPENDENCE OF OCCURRENCE RATES OF SOLAR FLARES AND CORONAL MASS EJECTIONS ON THE SOLAR CYCLE PHASE AND THE IMPORTANCE OF LARGE-SCALE CONNECTIVITY
    Lee, Kangjin
    Moon, Y. -J.
    Nakariakov, V. M.
    ASTROPHYSICAL JOURNAL, 2016, 831 (02):
  • [29] Predicting Hourly Solar Irradiance Using Machine Learning Methods
    Obiora, Chibuzor N.
    Ali, Ahmed
    Hassan, Ali N.
    2020 11TH INTERNATIONAL RENEWABLE ENERGY CONGRESS (IREC), 2020,
  • [30] Predicting Perovskite Bandgap and Solar Cell Performance with Machine Learning
    Gok, Elif Ceren
    Yildirim, Murat Onur
    Haris, Muhammed P. U.
    Eren, Esin
    Pegu, Meenakshi
    Hemasiri, Naveen Harindu
    Huang, Peng
    Kazim, Samrana
    Oksuz, Aysegul Uygun
    Ahmad, Shahzada
    SOLAR RRL, 2022, 6 (02):