Predicting Solar Flares with Machine Learning: Investigating Solar Cycle Dependence

被引:53
|
作者
Wang, Xiantong [1 ]
Chen, Yang [2 ]
Toth, Gabor [1 ]
Manchester, Ward B. [1 ]
Gombosi, Tamas, I [1 ]
Hero, Alfred O. [3 ]
Jiao, Zhenbang [2 ]
Sun, Hu [2 ]
Jin, Meng [4 ,5 ]
Liu, Yang [6 ]
机构
[1] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[4] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA USA
[5] SETI Inst, Mountain View, CA 94043 USA
[6] Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA
来源
ASTROPHYSICAL JOURNAL | 2020年 / 895卷 / 01期
基金
美国国家科学基金会;
关键词
Solar flares; Solar activity; RECONNECTION; MODEL;
D O I
10.3847/1538-4357/ab89ac
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A deep learning network, long short-term memory (LSTM), is used to predict whether an active region (AR) will produce a flare of class Gamma in the next 24 hr. We consider Gamma to be >= M (strong flare), >= C (medium flare), and >= A (any flare) class. The essence of using LSTM, which is a recurrent neural network, is its ability to capture temporal information on the data samples. The input features are time sequences of 20 magnetic parameters from the space weather Helioseismic and Magnetic Imager AR patches. We analyze ARs from 2010 June to 2018 December and their associated flares identified in the Geostationary Operational Environmental Satellite X-ray flare catalogs. Our results produce skill scores consistent with recently published results using LSTMs and are better than the previous results using a single time input. The skill scores from the model show statistically significant variation when different years of data are chosen for training and testing. In particular, 2015-2018 have better true skill statistic and Heidke skill scores for predicting >= C medium flares than 2011-2014, when the difference in flare occurrence rates is properly taken into account.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Machine learning techniques applied to solar flares forecasting
    Ribeiro, F.
    Gradvohl, A. L. S.
    ASTRONOMY AND COMPUTING, 2021, 35
  • [2] On Solar Flares and Cycle 23
    Kossobokov, Vladimir
    Le Mouel, Jean-Louis
    Courtillot, Vincent
    SOLAR PHYSICS, 2012, 276 (1-2) : 383 - 394
  • [3] On Solar Flares and Cycle 23
    Vladimir Kossobokov
    Jean-Louis Le Mouël
    Vincent Courtillot
    Solar Physics, 2012, 276 : 383 - 394
  • [4] Investigating ''precursor flows'' in solar flares
    Newton, EK
    ASTROPHYSICAL JOURNAL, 1997, 484 (01): : 455 - 462
  • [5] Ionospheric Response on Solar Flares through Machine Learning Modeling
    Arnaut, Filip
    Kolarski, Aleksandra
    Sreckovic, Vladimir A.
    Mijic, Zoran
    UNIVERSE, 2023, 9 (11)
  • [6] The solar cycle: predicting the peak of solar cycle 25
    Z. L. Du
    Astrophysics and Space Science, 2020, 365
  • [7] The solar cycle: predicting the peak of solar cycle 25
    Du, Z. L.
    ASTROPHYSICS AND SPACE SCIENCE, 2020, 365 (06)
  • [8] Solar neutron events associated with large solar flares in solar cycle 23
    Watanabe, K.
    Muraki, Y.
    Matsubara, Y.
    Sako, T.
    Sakai, T.
    Tsuchiya, H.
    Shibata, S.
    Masuda, S.
    Yoshimori, M.
    Ohmori, N.
    Velarde, A.
    Ticona, R.
    Martinic, N.
    Miranda, P.
    Kakimoto, F.
    Ogio, S.
    Tsunesada, Y.
    Tokuno, H.
    Shirasaki, Y.
    Valdes-Galicia, J. F.
    Hurtado, A.
    Musalem, O.
    Gonzalez, L. X.
    Ogasawara, R.
    Mizumoto, Y.
    Nakagiri, M.
    Miyashita, A.
    Stoker, P. H.
    Lopate, C.
    Kudela, K.
    Gros, M.
    Proceedings of the 29th International Cosmic Ray Conference Vol 1: SH1 and SH2, 2005, : 37 - 40
  • [9] Solar X-ray flares and ionospheric sudden phase anomalies relationship: A solar cycle phase dependence
    Pacini, Alessandra Abe
    Raulin, Jean-Pierre
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2006, 111 (A9)
  • [10] IONOSPHERIC EFFECTS OF TWO SOLAR FLARES AT THE MAXIMUM OF SOLAR CYCLE 23 AND AT THE MINIMUM OF SOLAR CYCLE 24
    Smirnov, V. M.
    Smirnova, E., V
    SOLAR-TERRESTRIAL PHYSICS, 2019, 5 (02): : 76 - 80